TED (21) – 2022 REVISION 2021

FOURTH SEMESTER DIPLOMA EXAMINATION IN ENGINEERING AND TECHNOLOGY

LINEAR INTEGRATED CIRCUITS

MODEL QUESTION PAPER – SET-1

Time: 3 hours Maximum Marks: 75

PART A I. Answer all the following questions in one word or sentence.

 $(9 \times 1 = 9 \text{ Marks})$

	Module	Outcome Cognit	,
1	Define slew rate	M1.03	R
2	Draw the equivalent circuit of an operational amplifier.	M1.02	U
3	Determine the lower frequency limit of integration for the circuit given below.	M2.02	U
4	Why the control terminal (pin 5) of 555 timer IC is normally connected to ground through a capacitor of value 0.01µF.	M3.01	R
5	Why NE555 IC got its name?	M3.01	R
6	Define Lock range in PLL.	M3.03	R
7	Define the term settling time related to DAC	M4.03	R
8	Define resolution of ADC.	M4.02	R
9	Draw the pin out of IC7805.	M4.01	R

PART B

II. Answer any Eight questions from the following

 $(8 \times 3 = 24 \text{ Marks})$

	N.	110	C ::: 1 1
	M	odule Outcome	Cognitive level
1	A 741C op-amp is used as an inverting amplifier with a gain of		
	50. The voltage gain vs frequency curve of 741C is flat upto	M1.04	A
	20kHz.What maximum peak to peak input signal can be	1011.04	A
	applied without distorting the output.		

2	With the help of a circuit diagram explain the working of a differential amplifier if the following inputs are applied (i) $V_{b1}=0V$, $V_{b2}=1V$ (ii) $V_{b1}=1V$, $V_{b2}=1V$ (iii) $V_{b1}=-1V$, $V_{b2}=1V$	M1.01	A
3	List out the ideal characteristics of an op-amp.	M1.03	R
4	Draw and explain the working of a practical differentiator and analyze its frequency response.	M2.02	U
5	Discuss the principle of operation of NE565 PLL IC.	M3.03	U
6	A 555 timer is configured in a stable mode with $R_A=2~k\Omega,$ $R_B=6~k\Omega$ and $C=0.1~\mu F.$ Determine the frequency of oscillation.	M3.02	A
7	Draw the internal block schematic of NE555 IC.	M3.01	U
8	Draw and explain a 4-bit weighted resistor DAC.	M4.03	U
9	Compare the 78XX and 79XX fixed voltage regulators.	M4.01	U
10	With a neat diagram explain the working of Flash ADC.	M4.02	U

PART C

III.	Answer all questions from the following	(6x 7 = 42 Marks)
	1	Modula Outcoma Cognitiva laval

Module Outcome Cognitive level				
1	List and explain the function of all the basic building blocks of an op-amp.	M1.02	U	
OR				
2	Draw and explain the circuit of non-inverting amplifier. Also derive the expression for its closed loop voltage gain.	M1.04	U	
3	Design a second order Butterworth low-pass filter with an upper cut-off frequency of 1kHz	M2.05	A	
OR				
4	Design the circuits to obtain the following output (i) $V_o = 5V_1 + 3V_2$ (ii) $V_o = -\frac{V_1 + V_2 + V_3}{3}$ (iii) $V_o = -4V_1 - 6V_2$	M2.01	A	
5	With the help of circuit diagrams and graphs, explain the working of a Full wave Precision rectifier.	M2.02	U	
OR				
6	Design a Schmitt Trigger with hysteresis width, V_H = 2V. Assume \pm Vsat= \pm 14V	M2.02	U	
7	How to implement the instrumentation amplifier using three op-amp. Deduce the condition for ensuring high CMRR in the circuit?	M2.01	U	

OR			
8	Draw and explain op-amp based log and antilog amplifiers.	M2.01	U
9	With the help of block diagram explain the working of PLL. Explain any two applications of PLL.	M3.04	U
OR			
10	With the help of circuit diagram and internal diagram, explain the working of a Low Voltage Regulator using IC723	M4.01	U
11	Explain the working of successive approximation ADC	M4.02	U
OR			
12	Discuss how digital signal is converted into analog signal in a weighted resistor DAC.	M4.03	U