$\qquad$
$\qquad$
DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2022

FUNDAMENTALS OF ELECTRICAL ENGINEERING
[Maximum marks: 75]
(Time: 3 Hours)
PART A
I. Answer all questions in one word or one sentence. Each question carries one mark.
( $9 \times 1=9$ Marks)

|  |  | Module <br> outcome | Cognitive <br> level |
| :--- | :--- | :---: | :---: |
| 1 | What is the unit of electric current? | M 1.01 | R |
| 2 | According to Ohm's law the potential difference across a conductor <br> is $\ldots \ldots . .$. to current flowing through it. | M 1.02 | R |
| 3 | The time taken by an alternating quantity for one complete cycle of <br> wave is known as ............ | M 1.03 | R |
| 4 | List any two types of single phase induction motor. | M 2.03 | R |
| 5 | Name the starter used to start a DC shunt motor | M 2.04 | R |
| 6 | List any two application of three phase induction motor | M 2.02 | R |
| 7 | Write the equation for transformation ratio of a transformer. | M 3.01 | R |
| 8 | The outer most electrons of an atom are called........electrons. | M 4.02 | R |
| 9 | In a transistor collector-base region is always...........biased | M 4.03 | R |

PART B
II. Answer any eight questions from the following. Each question carries three marks.
( $8 \times 3$ = 24 Marks)

|  |  | Module <br> outcome | Cognitive <br> level |
| :--- | :--- | :---: | :---: |
| 1 | Derive the expression for equivalent resistance when three resistors <br> $R_{1}, R_{2}$ and $R_{3}$ are connected in series. | M 1.01 | A |
| 2 | Define the followings with respect to an alternating voltage <br> (a)Rms value (b) Peak value | M 1.03 | U |
| 3 | State Ohms law and write its mathematical expression | M 1.02 | R |
| 4 | State the functions of the following in a DC Motor <br> (1) Commutator (2) Carbon brush | M 2.01 | R |
| 5 | Explain the working of a single phase capacitor start induction <br> motor. | M 2.03 | U |
| 6 | Explain the working of an autotransformer. | M 3.02 | U |
| 7 | Explain the principle of operation of induction heating | M 3.03 | U |


| 8 | Describe the construction of a single phase transformer | M3.01 | U |
| :--- | :--- | :---: | :---: |
| 9 | Explain the working of a half wave rectifier | M4.02 | U |
| 10 | Explain the working of BJT (Bipolar Junction Transistor) | M4.03 | U |

## PART C

Answer all questions. Each question carries seven marks.
( $6 \times 7=42$ Marks)

\begin{tabular}{|c|c|c|c|}
\hline \& \& Module outcome \& Cognitive level \\
\hline III \& \begin{tabular}{l}
The magnetic flux linked with a coil having 250 turns is changed from 1.4 Wb to 2 Wb in 0.45 seconds. Calculate the induced emf in the coil. \\
OR \\
A small scale industry has the following load. Calculate the November month energy bill at the rate of Rs. 4 per KWH. \\
1. 20W LED tube 10 numbers working 12 Hrs a day. \\
2. 80 W fan 5 numbers working 8 Hrs a day. \\
3. 250 W AC, 2 numbers working 6 Hrs a day.
\end{tabular} \& M1.03
M1.04 \& A

A <br>
\hline V

VI \& | Explain the classification of DC motors based on field connection. |
| :--- |
| OR |
| Explain with neat sketch the construction and working of star delta starter. | \& \[

$$
\begin{aligned}
& \text { M2.01 } \\
& \text { M2.04 }
\end{aligned}
$$
\] \& U

U <br>

\hline | VII |
| :--- |
| VIII | \& | Explain the construction of a three phase induction motor with neat sketch |
| :--- |
| OR |
| Sketch the circuit diagram of DOL starter and explain its working. | \& \[

$$
\begin{aligned}
& \text { M2.02 } \\
& \text { M2.04 }
\end{aligned}
$$

\] \& | $\mathrm{U}$ |
| :--- |
| U | <br>


\hline IX \& | Derive the emf equation of a transformer |
| :--- |
| OR |
| Explain the working of an induction furnace. | \& \[

$$
\begin{aligned}
& \text { M3.01 } \\
& \text { M3.04 }
\end{aligned}
$$

\] \& | $\mathrm{U}$ |
| :--- |
| U | <br>

\hline XI

XII \& | Explain the working of centre tapped full wave rectifier with neat figure and input and output wave forms. |
| :--- |
| OR |
| With the help of a neat diagram, explain the working of a transistor as a switch. | \& \[

$$
\begin{aligned}
& \text { M4.02 } \\
& \text { M4.03 }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{U} \\
& \mathrm{U}
\end{aligned}
$$
\] <br>

\hline \[
$$
\begin{aligned}
& \text { XIII } \\
& \text { XIV }
\end{aligned}
$$

\] \& | Explain the different elements of electric drives. |
| :--- |
| OR |
| Draw and explain the operation of SCR | \& \[

$$
\begin{aligned}
& \hline \text { M4.04 } \\
& \text { M4.03 }
\end{aligned}
$$
\] \& U

U <br>
\hline
\end{tabular}

