Model Question Paper I

FUNDAMENTALS OF ELECTRICAL ENGINEERING

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark.

1	Define form factor	M1.03	R
2	State Kirchoff's current law	M1.02	R
3	List any two applications of single phase induction motor	M2.03	R
4	State the necessity of starter in DC motors.		R
5	State the principle of heat production from electric power		R
6	6 State the purpose of laminating the core of transformer		U
7	Write any two advantages of autotransformer over two winding transformer	M3.02	R
8			R
9	Draw the waveform of a half wave rectifier	M4.02	U

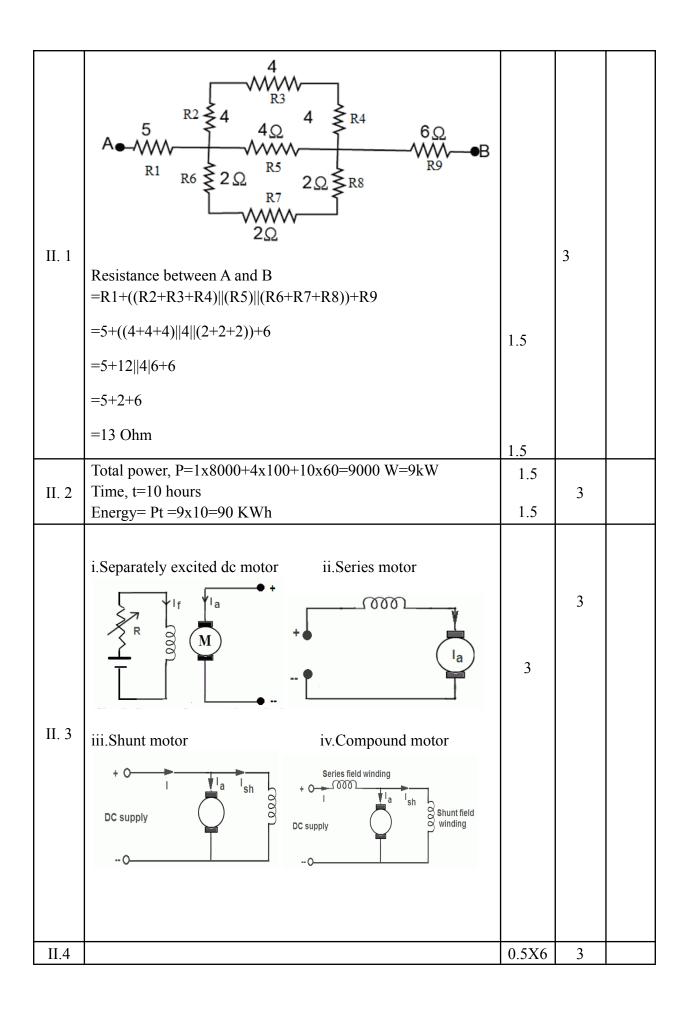
PART B

II. Answer any **eight** questions from the following, each question carries 3 marks.

1	Calculate effective resistance between the points A and B of the given circuit 4Ω 4Ω $4Q$ $4Q$ $4Q$ $4Q$ $4Q$ $4Q$ $4Q$ $4Q$	M1.02	А
2	A consumer uses a 8 KW geyser, four fans of 100W and ten bulbs of 60 W for 10 hours. Calculate the units (KWh) of electrical energy used.	M1.04	А
3	Show the classification of dc motor on the basis of field winding in a schematic diagram		U
4	List the applications of three phase induction motor		R
5	Derive the emf equation of a single phase transformer		U
6	List the applications of dielectric heating	M3.03	R
7	Illustrate the working of welding transformer	M3.02	U
8	List different types of resistors used in electronics	M4.01	R
9	Draw the V-I characteristics of SCR	M4.03	U
10	Describe the working of PN junction diode in Forward bias	M4.02	U

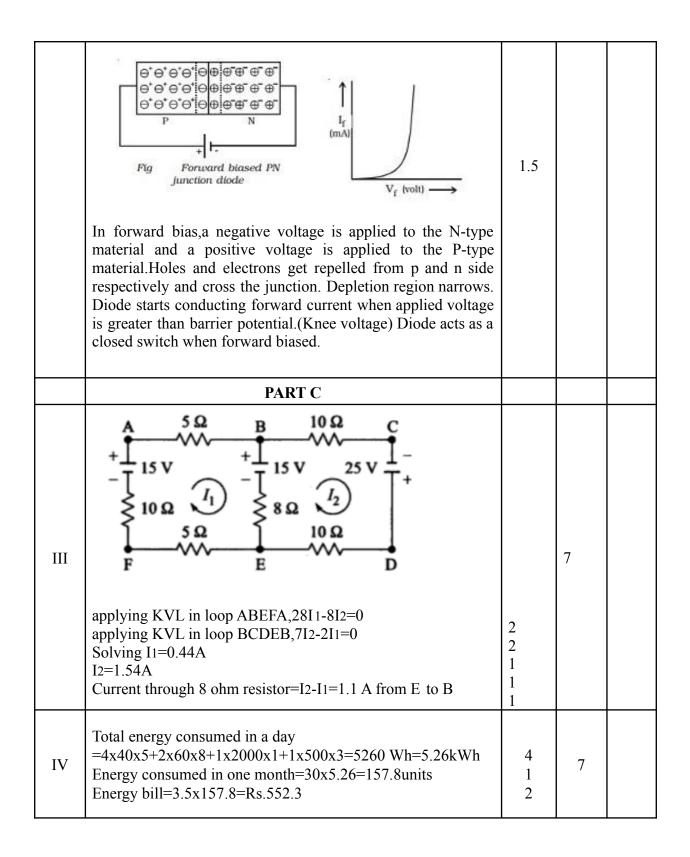
PART C Answer ALL questions. Each question carries 7 marks.

III	Solve the network shown in figure for the current in 8 ohm resistor using Kirchoff's laws 5Ω 10Ω 15V 15V 15V 25V 10Ω 8Ω 10Ω 10Ω	M1.02	А
	OR		
IV	A residential flat has the following average electrical consumptions per day: a)4 bulbs of 40 W working for 5 hours per day; b)2 fans of 60W working for 8 hours per day; c)1 water heater rated 2kW working for 1hour per day; d)1 water pump of 0.5 kW rating working for 3 hours per day; Calculate the cost of energy per month if 1 unit of energy costs Rs. 3.50/-	M1.04	А
V	Define the following terms : a) Cycle b) Period c) RMS value d) Average value e) Peak factor	M1.03	R
	OR		
VI	Define the following terms: a) Resistance b) Reactance c) Impedance d) Power factor in terms of impedance	M1.03	R
VII	Explain the working principle of DOL starter	M2.04	U
	OR		
VIII	Explain the working principle of three phase induction motor	M2.02	U

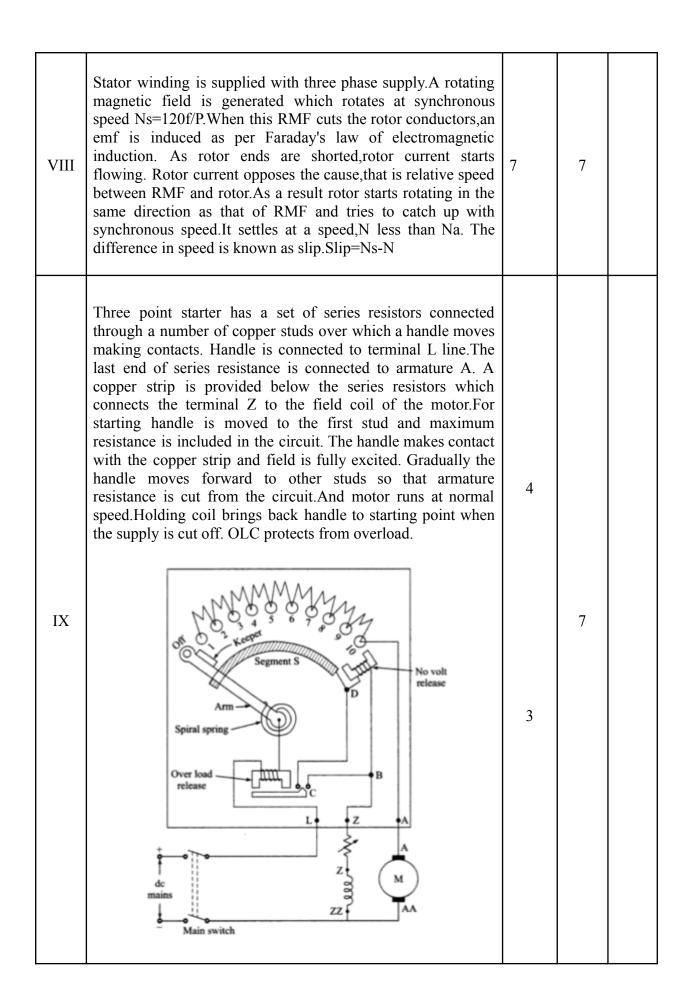

IX	Explain the working of a three point starter with a neat diagram.	M2.04	U
	OR		
X	Explain any one method of starting single phase induction motor with neat diagram	M2.03	U
XI	Describe the working of direct arc furnace		U
	OR		
XII	Describe the working principle of single phase transformer	M3.01	U
XIII	Explain the working of transistor as a switch	M4.03	U
	OR		
XIV	Describe the working of full wave bridge rectifier using diodes	M4.02	U

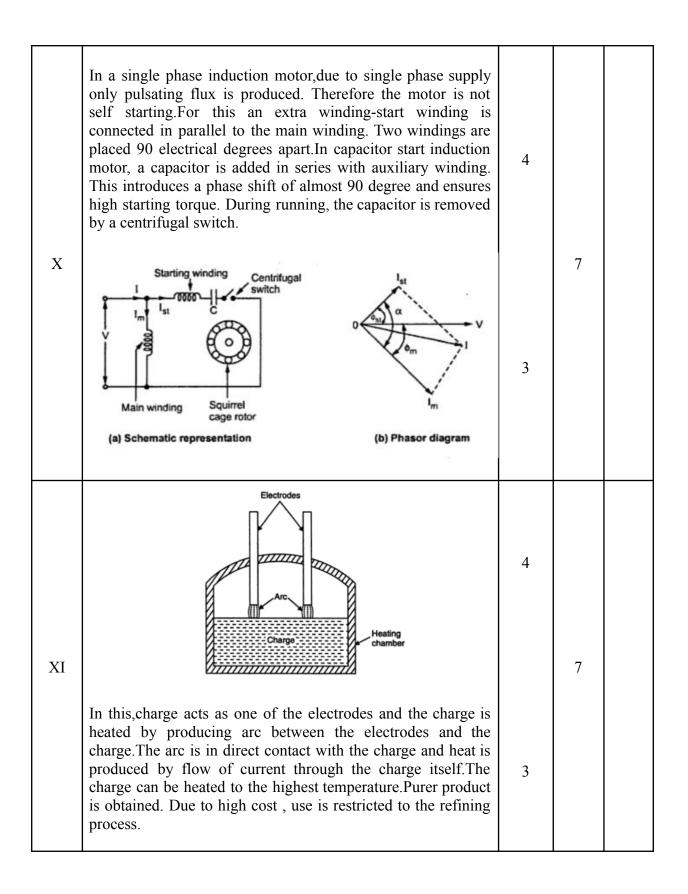
Scoring Indicators

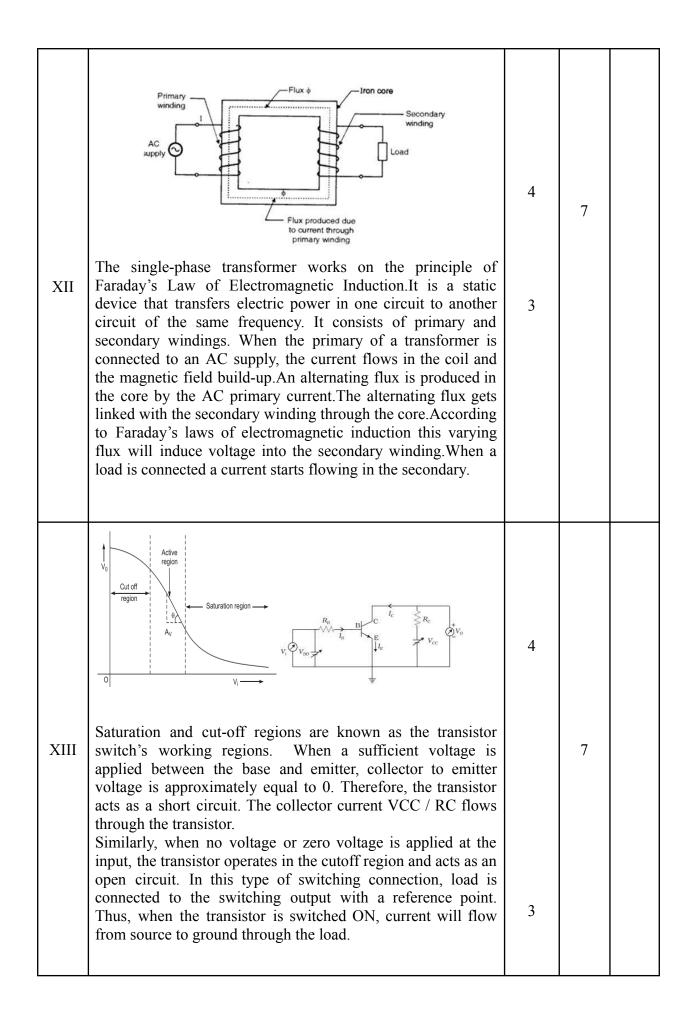

Model Question Paper I

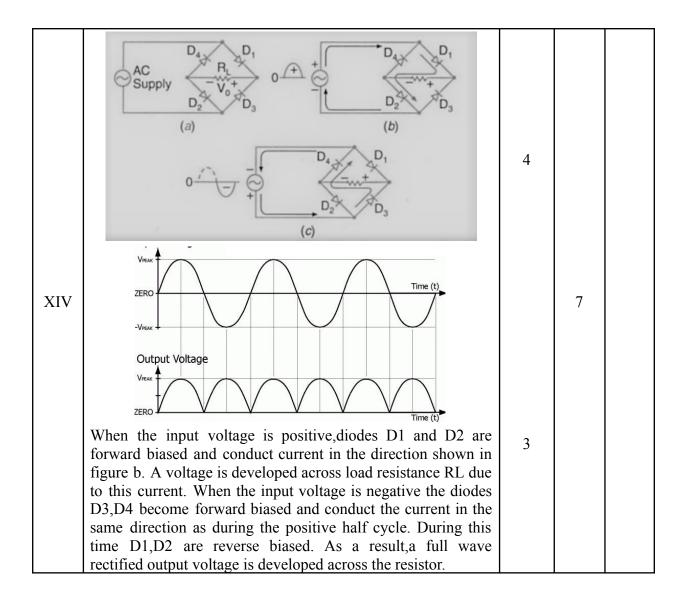

FUNDAMENTALS OF ELECTRICAL ENGINEERING

Q No	FUNDAMENTALS OF ELECTRICAL ENGINEER	Split score	Sub Total	Total Scor e
I. 1	PART A Form factor is defined as the ratio of rms value to average value. Form factor=1.11 for sine wave	1	1	
I. 2	KCL:The algebraic sum of currents entering a node is zero. The sum of currents entering a node is equal to the sum of currents leaving the node.	1	1	
I. 3	Pumps, fan,compressor (Any two)	1	1	
I. 4	At starting back emf=0,current drawn from the supply is very large as the armature resistance is low. To prevent damage due to high starting current,starters are used	1	1	
I. 5	Joules law of heating- The heat generated due to the current flow in an electric wire is proportional to the product of resistance of the wire, time of flow and square of the current passed. By Joules law, Electric heat, $H = I^{2}Rt$ where I-current ,R-resistance of the element,t-time during which current is passed	1	1	
I. 6	Core is laminated to reduce the eddy current loss	1	1	
I. 7	i. Smaller in sizeii.Require less copperiii.More efficient(Any two)	1	1	
I. 8	ON-Saturation OFF-Cut off	1	1	
I. 9	$V_{m} = \int_{\pi/2}^{V_{m}} \frac{1}{\pi/2} \frac{1}{\pi} + \int_{2\pi}^{2\pi} \frac{1}{3\pi} \frac{1}{3\pi} \frac{1}{\pi} \frac{1}{\pi} \frac{1}{2\pi} \frac{1}{3\pi} \frac{1}{\pi} $	1	1	
	PART B			




	i. Centrifugal pumps			
	ii.Conveyors			
	iii.Compressors			
	iv.Reciprocating pumps			
	v.Lifts			
	vi.Hoist			
	Flux rises sinusoidally to its maximum value Φ_m from 0. It reaches to the maximum value in one quarter of the cycle i.e in T/4 sec (where, T is the time period of the sin wave of the supply = 1/f). Therefore, average rate of change of flux = $\Phi_m / T/4$ = $\Phi_m / 1/4f$ = 4f Φ_m			
II. 5	Induced emf per turn = rate of change of flux per turn		3	
	Therefore, average emf per turn = 4f $\Phi_{\rm m}$	1		
	RMS value of emf per turn = Form factor X average emf/turn.			
	RMS value of emf per turn = $1.11 \text{ x } 4f \Phi_m = 4.44f \Phi_m$.	1		
	RMS value of induced emf in primary winding (E1) = RMS value of emf per turn X Number of turns in primary winding E1 = $4.44f N1 \Phi m$	0.5		
	RMS value of induced emf in secondary winding (E2) = $E2 = 4.44f N2 \Phi m$	0.5		
II. 6	 i.Preheating of plastic preforms ii.Gluing of wood iii.Baking of foundry course iv.Diathermy v.Sterilization vi.Textile industry 	0.5x6	3	
II. 7	Welding transformer is a step down transformer which	1.5	3	





	a) C_{trails} and c_{trail} c_{trail	1		1
	a) Cycle-one complete set of positive and negative half cycle	1		
	b) Period-time taken to complete one cycle	1		
	c) RMS - root mean square value -equivalent to the value	2		
	of a dc voltage that causes an equal amount of heat due	_	_	
V	to the circuit current flowing through a resistance		7	
	d) Average value-equivalent to the value of a dc current	2		
	that transfers an equal amount of charge as is			
	transferred by the ac in the same time			
	e) Peak factor-ratio of maximum value to rms value	1		
	a) Resistance, R- It is a property of any material to oppose			
	the flow of the charges flowing through it.	2		
	b) Reactance,X-I is the opposition to the flow of current from a circuit element due to its inductance and	2		
	capacitance.	2		
	c) Impedance,Z-It is the effective resistance of an electric	2	_	
VI	circuit or component to alternating current, arising		7	
	from the combined effects of ohmic resistance and	2		
	reactance.	2		
	d) Power factor-It is the ratio of resistance to Impedance	1		
	pf=R/Z	1		
	In DOL starter, an induction motor is connected directly			
	across its 3-phase supply, and the DOL starter applies the full			
	line voltage to the motor terminals. The motor draws a very			
	high inrush current compared to the full load current of the			
	motor (up to 5-8 times higher). The value of this large current			
	decreases as the motor reaches its rated speed. Motor develops			
	starting torque=1.96 times of rated torque.It is used for small			
	motors below 5 HP. A circuit breaker or fuse is used for			
	protection against overcurrent. In order to protect the motor from overloading, an overload relay is used.	4		
	ĨĪĪ			
	2 2 Pruses			
VII			7	
			/	
		3		
		5		
	(MOTOR)			
	\bigcirc			

Module wise question analysis

Question No		Module			No of questions	
	Ι	II	III	IV		
Part A (1 Mark)	2	2	3	2	9	
Part B (3 Marks)	2	2	3	3	10	
Part C (7 Marks)	4	4	2	2	12	
Total questions	8	8	8	7	31	
Total (Marks)=123	36	36	26	25		

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understand	Apply	
Part A (1 Mark)	6	3	0	9
Part B (3 Marks)	3	5	2	10
Part C (7 Marks)	2	8	2	12
Total questions	11	16	4	31
Total (Marks)=123	29	74	20	

Prepared by	Scrutinised by
Remye Remya Mohanan Lecturer in EEE Govt. Womens Polytechnic College Thrissur	Mohankumar P HoD EEE Govt Polytechnic College Perinthalmanna

Model Question Paper II

FUNDAMENTALS OF ELECTRICAL ENGINEERING

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark.

1	State Faraday's law of electromagnetic induction	M1.02	R	
2	Write the relation between line voltage and phase voltage in star connection		R	
3	3 List any two applications of three phase induction motor			
4	During starting, the motor windings are connected in star configuration in star delta starter. Identify the reason behind this.	M2.04	U	
5	Define voltage transformation ratio of single phase transformer	M3.01	R	
6	List any two applications of dielectric heating.	M3.03	R	
7	Write the function of a welding transformer		U	
8	List different types of capacitors used in electronics	M4.01	R	
9	Draw the V-I characteristics of an ideal diode	M4.02	U	

PART B

II Answer any **eight** questions from the following, each question carries 3 marks.

1	The two electric lamps each of 40W,230V are connected in series across 230V supply. Calculate the power consumed by each lamp.	M1.04	А
2	A parallel arrangement of 6 ohm and 3 ohm resistor is placed in series with a 8 ohm resistor. If a potential difference of 60 V is applied across the circuit, calculate the current through the 3 ohm resistor.	M1.02	А
3	List the applications of dc motor	M2.01	R
4	Single phase induction motors are not self starting. Give reasons.		U
5	Illustrate the working of autotransformer		U
6	Enumerate advantages of electric heating	M3.03	R
7	Describe different modes of heat transfer	M3.03	U
8	List various active and passive electronic components	M4.01	R
9	Illustrate the working of chopper circuit	M4.03	U

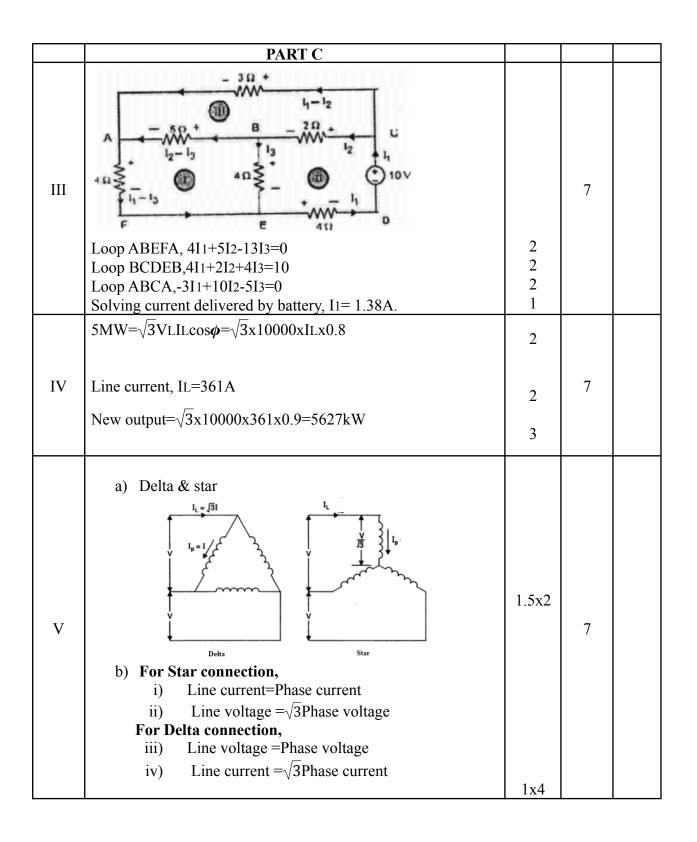
10	Draw the block diagram of electric drive	M4.04	U
10			

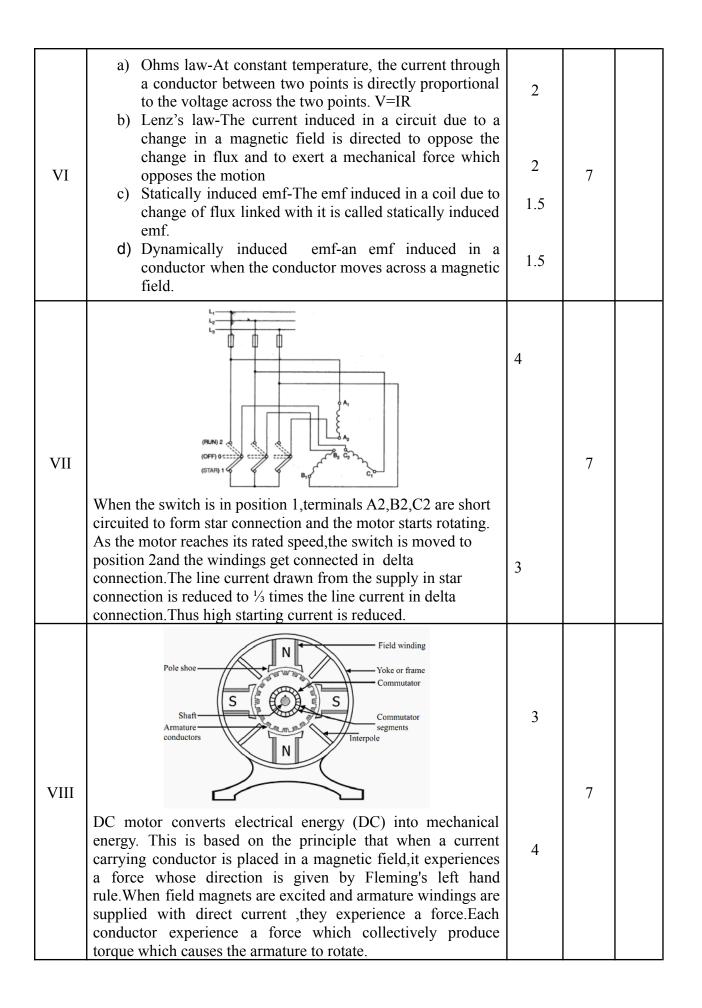
PART C

Answer ALL questions. Each question carries 7 marks.

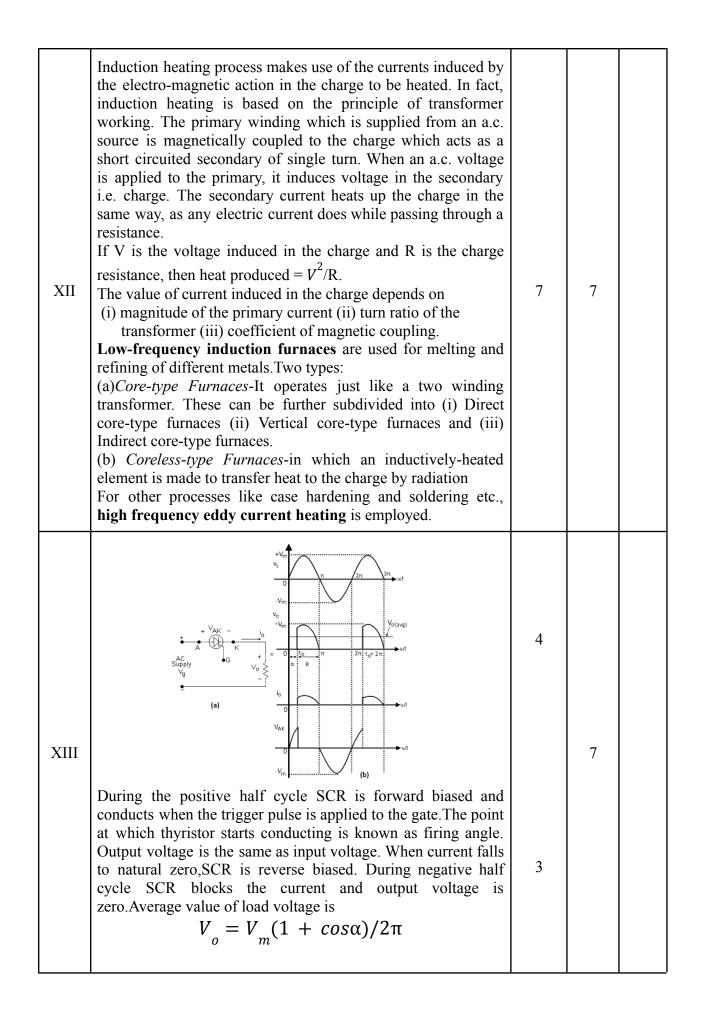
III	Solve the given circuit for the current delivered by the battery using Kirchoff's laws. 3Ω 4Ω 4Ω 4Ω 4Ω 4Ω 4Ω 4Ω 4	M1.02	А
	OR		
IV	A star connected 10kV three phase alternator supplying 5MW at 0.8 pf. If the total current remains the same,when the load power factor is raised to 0.9. Find the new output power.	M1.04	А
V	a) Draw star and delta connectionsb) Write the relation between line voltage and phase voltage, , line current and phase current in star and delta connection	M1.03	R
	OR		
VI	Define the following: a) Ohm's law b) Lenz's law c) Statically induced emf d) Dynamically induced emf	M1.02	R
VII	Explain the working of star-delta starter	M2.04	U
	OR		
VIII	Explain the working principle of dc motor	M2.01	U
IX	Explain the necessity of starter in a dc motor	M2.04	U
	OR		
X	Explain the constructional details of a three phase induction motor	M2.02	U
XI	Distinguish between core type and shell type transformer	M3.02	U
VII	OR Describe the principal of induction becting	N(2.02	TT
XII	Describe the principle of induction heating	M3.03	U
XIII	Explain the working of half wave controlled rectifier using SCR OR	M4.03	U
XIV	Explain the three modes of SCR	M4.03	U
		101-1.05	U

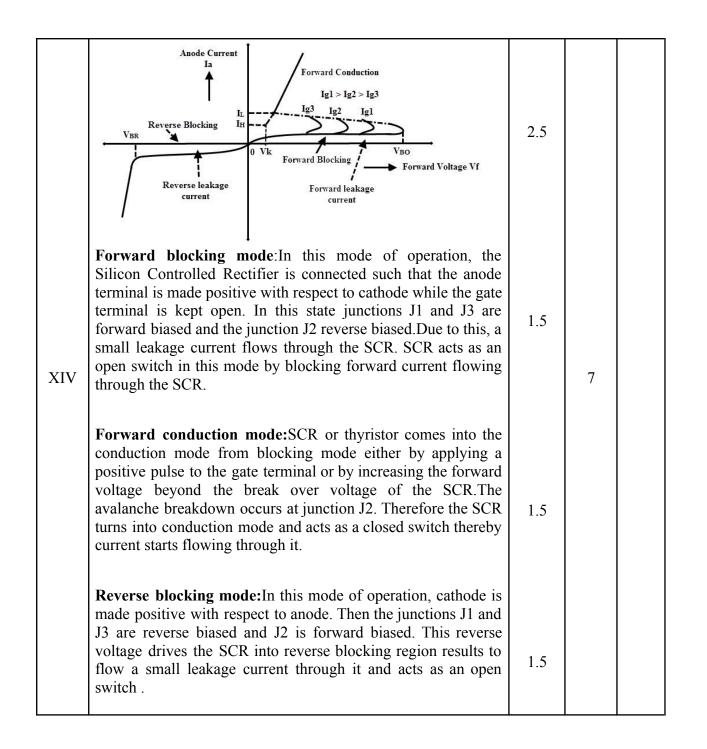
Scoring Indicators


Model Question Paper II


FUNDAMENTALS OF ELECTRICAL ENGINEERING

Q No	Scoring Indicators	Split score	Sub Total	Total scor e
	PART A			
I. 1	Whenever there is a change in magnetic flux linked with a coil, an emf is induced in the coil. The emf induced is proportional to the rate of change of magnetic flux.	1	1	
I. 2	Line voltage= $\sqrt{3}$ x Phase voltage	1	1	
I. 3	Lift,crane,hoist,textile industry (Any two)	1	1	
I. 4	The line current drawn from the supply in star connection is reduced to $\frac{1}{3}$ times the line current in delta connection. Thus we can reduce high starting current.	1	1	
I. 5	$V_2/V_1 = N_2/N_1$, V_1 - Primary voltage, V_2 -Secondary voltage, N_1 -No. of turns in primary, N_2 -No. of turns in secondary	1	1	
I. 6	Food processing,textile industry, sterilisation,diathermy (Any two)	1	1	
I. 7	To provide low voltage, high current in secondary circuit to aid in welding process	1	1	
I. 8	Film capacitor, ceramic capacitor, electrolytic capacitor <i>(Any two)</i>	1	1	
I. 9		1	1	
	PART B			
II. 1	Resistance of each lamp= $230^2/40=1322.5$ ohm Total resistance in circuit= $2x1322.5=2645$ ohm Current in circuit= $230/2645=0.087$ A Power consumed by each lamp= $0.087^2X1322.5=10$ W	1 1 1	3	


II. 2	Total resistance= $(6 3)+8=10$ ohm Total current= $60/10=6$ A Current through 30hm resistor= $6x6/(6+3)=4A$	1 1 1	3	
II. 3	i.Electric traction ii.Cranes iii.Elevators iv.Rolling mills v.Conveyors vi.Blowers	0.5x6	3	
II. 4	When we apply a single phase AC supply to the stator winding of a single phase induction motor, it produces its flux of magnitude, φm . According to the double field revolving theory, this alternating flux, φm is divided into two components of magnitude $\varphi m/2$. Each of these components will rotate in the opposite direction, with the synchronous speed, Ns.Now at starting condition, both the forward and backward components of flux are exactly opposite to each other. Also, both of these components of flux are equal in magnitude. So, they cancel each other and hence the net torque experienced by the rotor at the starting condition is zero. So, the single phase induction motors are not self-starting motors.	3	3	
II. 5	In autotransformer, one single winding is used as primary winding as well as secondary winding. The winding AB of total turns N1 is considered as primary winding. This winding is tapped from point 'C' and the portion BC is considered as secondary. If V1 voltage is applied across the primary winding the voltage across the portion BC of the winding, will be, V2=V1N2/N1 Auto Transformer	1.5	3	
II. 6	 i.Free from dirt ii.Doesnt produce any flue gas iii.Simple and accurate temperature control is possible iv.Economical v.High overall efficiency vi.Safe and quick response 	0.5x6	3	


II. 7	Conduction -transfer of heat from one part of a substance to another part of the same substance in physical contact with it without appreciable displacement of molecules forming the substrate Convection -transfer of heat within a fluid by mixing of one portion of the fluid with another Radiation -transfer of heat through space/matter by means other than conduction or convection that is by means of em waves	1x3	3	
II. 8	Active component-transistor, SCR,diode Passive component-resistor, capacitor, inductor	0.5x6	3	
II. 9	Chopper is a dc-dc converter that converts fixed dc power to variable power. The chopper acts as an ON/OFF switch that can rapidly connect or disconnect the source to load connection. Continuous DC is given as source to the chopper as Vs and chopped DC is obtained across the load as V0. During the period of TON the load voltage V0 is equal to the source voltage Vs. But when the interval TOFF occurs, output voltage becomes zero.	1.5	3	
II.10	Source Power modulator Motor Load Control unit Sensing unit Input command	3	3	

IX	For a dc motor, Ia=V-Eb/Ra proportional to speed.Armatur which is very small. As a res which damages the winding resistance is added to the armat	7	7		
X	 Stator: As its name indicates stator is a stationary part of the induction motor. A stator winding is placed in the stator of the induction motor and the three phase supply is given to it. Stator has stator frame, core, field winding. Stator consists of a steel frame which encloses a hollow cylindrical core made up of thin laminations of silicon steel to reduce hysteresis loss and eddy current loss. Rotor: The rotor is a rotating part of the induction motor. The rotor is connected to the mechanical load through the shaft. Two types of rotor-slip ring rotor and squirrel cage rotor. Shaft -for transmitting the torque to the load 			7	
	Lifting bolt Stator frame Stator core Stator slots Three phase stator winding Terminal box Rotor bars End ring Squirrel cage rotor Base support Sectional view				
	Core type	Shell type			
	The winding surrounds the core	The core surrounds the winding			
	Only one magnetic flux path	Two magnetic flux path			
	Used for high voltage level applications	Used for low voltage level applications			
XI	More loss ,less efficient	High efficiency	1X7	7	
	Less mechanical protection to winding	Better mechanical protection to winding			
	Cylindrical type winding is used	Sandwich type winding is used			
	Material requirement is high	Material requirement is low			

Module wise question analysis

Question No	Module				No of questions
	Ι	II	III	IV	
Part A (1 Mark)	2	2	3	2	9
Part B (3 Marks)	2	2	3	3	10
Part C (7 Marks)	4	4	2	2	12
Total questions	8	8	8	7	31
Total (Marks)=123	36	36	26	25	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understand	Apply	
Part A (1 Mark)	6	3	0	9
Part B (3 Marks)	3	5	2	10
Part C (7 Marks)	2	8	2	12
Total questions	11	16	4	31
Total (Marks)=123	29	74	20	

Prepared by	Scrutinised by
Remya Mohanan	Mohankumar P
Lecturer in EEE	HoD EEE
Govt.Womens Polytechnic College Thrissur	Govt Polytechnic College Perinthalmanna