MODEL QUESTION PAPER

Programme name: Mechanical Engineering

Course code: 3021

Time : 3 Hours

Semester :3

Course name: Strength of Materials

Max.Marks : 75

1. Answer all the following questions
($9 \times 1=9$ Marks)

1	The ratio of the change in dimension of the body due to the deformation to its original dimension in the direction perpendicular to the force is called----------- - strain.	MO 1.01	R
2	The ratio of ultimate stress to the design stress is called ----------	MO 1.03	U
3	A load that is spread along the beam over the entire length or part of its length is called---------	MO 2.01	U
4	Point at which the bending moment is zero or changes sign from positive to negative or vice versa is called ------	MO 2.02	R
5	The layer between top and bottom layers of the beam which is unchanged in length due to bending is called -------	MO 3.01	R
6	The lateral displacement of a beam under the load is termed as ---------	MO 3.04	U
7	Failure along longitudinal section is due to ------ stresses set up in the walls of the cylinder.	MO 4.03	R
8	-------- is the ratio of the mean coil diameter to the diameter of the spring wire.	MO 4.02	R
9	Torsional section modulus is defined as the ratio of the ------- to the radius of the shaft.	MO 4.01	U

2. Answer any Eight questionsfrom the following
$8 \times 3=24$ Marks)

1	Differentiate Lateral strain and Longitudinal strain. What is factor of safety?	MO 1.01	U
2	A load of 80 kN is to be raised with the help of a steel wire. Find the minimum diameter of the steel wire if the stress is not to exceed $100 \mathrm{MN} / \mathrm{m}^{2}$.	MO 1.05	U
3	A steel rod 4 m long and 20mm in diameter is subjected to an axial tensile force of 45 kN . Determine the change in length, diameter and volume of the rod. Take $\mathrm{E}=2.1 \mathrm{x} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and poisons ratio 0.3	MO 1.05	U
4	A simply supported beam of length 7 m carries a UDL of $3 \mathrm{kN} / \mathrm{m}$ over entire span. Draw SFD and BMD.	MO 2.03	A
5	What are the assumption made in the Euler's theory of long column?	MO 3.05	U
6	What you mean by a beam? Describe about cantilever beam and simply supported beam?	MO 2.01	U
7	A wooden beam of 140 mm wide and 240 mm deep is supported at each end of span of 4 meter. Determine the load, that can be placed at its center, to cause the beam a deflection of 10 mm . take E=6X10 ${ }^{4} \mathrm{~N} / \mathrm{mm}^{2}$	$\mathrm{MO} \mathrm{3.04}$	U

8	A steel rod 5m long and 40mm diameter is used as a column with one end fixed and other free. Determine the load by Euler's formula. Take E=200GPa.	MO3.05	U
9	A hollow shaft having an inside diameter 60\% of its outer diameter and has to transmit 200kW at 80rpm. If the shear stress is not to exceed 60 MPa , estimate the diameters of the shaft.	MO 4.01	A
10	Define stress in a thin cylinder shell subjected to an internal pressure?	MO 4.03	R

3. Answer all questions from the following ($\mathbf{6 x} 7=\mathbf{4 2}$ Marks)

1	A steel bar ABCD is subjected to point loads $\mathrm{P}_{1}, \mathrm{P} 2, \mathrm{P} 3$ and P_{4} as shown in fig. Determine the magnitude of the force P 3 necessary for equilibrium. If $\mathrm{P}_{1}=120 \mathrm{kN}$, $P_{2}=220 \mathrm{kN}$, and $\mathrm{P}_{4}=160 \mathrm{kN}$. Also determine the net change in length of the steel bar. Take E=200GPa.	MO 1.05	U
	OR		
2	Find the Youngs modulus of a steel specimen of 14 mm diameter and length 200 mm was found to elongate 0.2 mm when it is subjected to a tensile load of 40 kN .	MO 1.05	U
3	Draw SFD and BMD.	MO 2.03	A
	OR		
4	List down the important points for drawing shear force and bending moment diagrams	MO 2.02	U
5	A rod of length 2 m and diameter 25 mm is fixed between end grips and is heated through $100^{\circ} \mathrm{C}$. Young's modulus for the material is $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and coefficient of linear expansion is $12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. Calculate the stress induced and load on the end grips when (i) End grips are rigid and (ii) End grips yield by 2 mm .	MO 1.05	U
	OR		
6	A simply supported beam of span 6 m carries a u.d.l. of $2 \mathrm{kN} / \mathrm{m}$ throughout and a central point load of 12 kN . Find the position and magnitude of maximum deflection. $\mathrm{E}=200 \mathrm{kN} / \mathrm{mm} 2, \mathrm{I}=24 \times 10^{6} \mathrm{~mm}^{4}$.	MO 3.04	A
7	A cylindrical shell 4 m long, 1 m diameter and 12 mm thickness is subjected to an internal pressure of $1.2 \mathrm{~N} / \mathrm{mm}^{2}$. Calculate the longitudinal and hoop stresses, change in diameter, length and volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} ; 1 / \mathrm{m}=0.3$	MO 4.03	U

	OR		
8	In a close-coiled spring, the diameter of each coil is to be 10 times that of wire of the spring and the maximum shear stress is not to exceed $60 \mathrm{~N} / \mathrm{mm}^{2}$. Maximum permissible deflection under a load of 400 N is 10 cm . Taking the shear modulus as $9 \times 10^{4} \mathrm{~N} / \mathrm{mm}^{2}$, determine the diameter of the coil, number of coils and energy stored in the coil.	MO 4.02	U
9	The external and internal diameter of a hollow cast iron column is 50 mm and 40 mm respectively. If the length of the column is 3 m and both of its ends are fixed, determine the crippling load using Rankines formulae. Take the values of $\sigma_{\mathrm{c}}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=1 / 1600$ in Rankines formula.	MO 3.05	U
	OR		
10	Derive the bending equation and discuss the assumptions for it.	MO 3.02	R
11	A thin cylinder of internal diameter 1.25 m contains fluid at an internal pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the maximum thickness of the cylinder if (i) The longitudinal stress is not to exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$. (ii) The circumferential stress is not to exceed $45 \mathrm{~N} / \mathrm{mm}^{2}$.	MO 4.03	U
	OR		
12	State and prove Torsion equation.	MO 4.01	R

