REVISION 2021

TED (21) - 2021

SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING AND TECHNOLOGY (Common to AR / AU / CE / ME / MT / TD / WP)

ENGINEERING MECHANICS

MODEL QUESTION PAPER

Time: 3 hours

Maximum Marks: 75

PART A

I. Answer all questions in one word or one sentence. Each question carries one mark.

(9 x 1 = 9 Marks)

1	An infinite straight line along which the force acts is called	MO1.01	R
2	A force of 10 kN is acting at $60\Box$ with vertical. Determine the horizontal and vertical component of force.	MO1.03	U
3	Define cantilever beam	MO2.01	R
4	No. of restraints in fixed beam is	MO2.01	U
5	The position centroid of a triangular lamina from the base is	MO3.01	R
6	Name the moment of inertia about an axis(Izz) which is perpendicular to other the mutually perpendicular axes Ixx and Iyy.	MO3.05	U
7	Internal resistance offered by a body against external loading is called	MO4.01	R
8	Ratio of lateral strain to linear strain is	MO4.05	R
9	The maximum value of static friction comes into play when a body just starts to slide over another is	MO4.06	R

PART B

II. Answer any eight questions from the following. Each question carries 3 marks

 $(8 \times 3 = 24 \text{ Marks})$

1	Differentiate scalar quantity and vector quantity	MO 1.02	R
---	---	---------	---

2	Determine the magnitude of the reaction force R $ \begin{array}{c} $	MO1.03	U
3	State Varignons theorem	MO1.03	R
4	Define simply supported and cantilever beam.	MO2.01	R
5	Sate the laws of friction	MO2.05	R
6	Illustrate the center of gravity of the following solid bodiesa) Hemisphereb) Cone	MO3.01	R
7	State perpendicular axis theorem	MO3.04	R
8	Draw the stress strain curve of steel and explain the terms a) Limit of proportionality b) Ultimate stress	MO4.02	R
9	Explain the following propertiesa) Elasticityb) Plasticityc) Toughness	MO4.04	R
10	The value of modulus of elasticity and poisons ratio of an alloy body is 150GPA and 0.25 respectively. Determine the value of bulk modulus of the alloy.	MO4.05	U

PART C

Answer all questions. Each question carries seven marks

(6 x 7 = 42 Marks)

III	A boat is moved uniformly along a canal by two horses pulling with forces P = 890 N and Q = 1068 N acting under an angle α = 60°. Determine the magnitude of the resultant pull on the boat and the angles β and ν .	MO1.03	A
	OR		

	$ \begin{array}{c} D \\ Q \\ Q \\ A \\ P \\ P \\ P \\ $		
XIII	A rod 150cm long and of diameter 2.0cm is subjected to an axial	MO4.01 MO4.03	U
	pull of 20kN. If the modulus of elasticity of the material of the rod is 2×10^5 N/mm ² , determine :	WI04.03	
	(i) the stress		
	(ii) the strain and (iii) the elemention of the red		
	(iii) the elongation of the rod		
	OR		
XIV	Determine the changes in length, breadth and thickness of a steel bar which is 4m long, 30mm wide and 20mm thick and is subjected to an axial pull of 30kN in the direction of its length. Take $E=2\times10^5$ N/mm ² and Poisson's ratio = 0.3	MO4.03 MO4.05	А

ANSWER KEY ENGINEERING MECHANICS MODEL QUESTION PAPER

PART A

Answer all the following questions

(9 x 1 = 9 Marks)

I

Q.No	Answer	Split up	Total Mark
1	Line of action of force	1	1
2	Vertical component = 10 Sin60 Horizontal component = 10 Cos60	1	1
3	A beam with one end fixed and other end free	1	1
4	3	1	1
5	h/3	1	1
6	Polar moment of inertia	1	1
7	Stress	1	1
8	Poisons ratio	1	1
9	Limiting friction	1	1

II.

PART B

Q.No	Answer	Split up	Total Mark
1	Scalars: only magnitude is associated.	1	
	Ex: time, volume, density, speed, energy, mass	1	
	Vectors: possess direction as well as magnitude, and must obey the parallelogram law of addition (and the triangle law).	1	3
	Ex: displacement, velocity, acceleration, force, moment, momentum	1	

2		2	
_	$T = R = 98.1 \mathrm{N}$	-	
	$\frac{T}{\sin 31.4} = \frac{R}{\sin 110} = \frac{98.1\mathrm{N}}{\sin 38.6^{\circ}}$		
	51151.4 511110 511158.0		
	T = 81.9 N		
		1	
	<u>R =147.8 N</u>		3
3	The moment of the resultant of two concurrent forces with	3	3
	respect to a center in their plane is equal to the algebraic		
	sum of the moments of the components with respect to some centre.		
4	simply supported beam is supported at both ends. One end	1.5	
	of the beam is supported by hinge support and the other one	1.0	3
	by roller support. Cantilever beam is a structural member of which one end is	1.5	
	fixed and other end is free	1.5	
5	1. Friction always acts in the direction opposite to the		
	motion or impending motion.		
	2. The limiting friction is directly proportional to the normal reaction.		
	3. Until the motion starts the static frictional force adjust itself to just balance the force tending to produce motion.		3
	4. Friction is independent of the area of contact between the two surfaces but depends on the roughness of the surface.		
	5. Kinetic friction also bears a constant ratio with normal reaction but this ratio is slightly less than that in the case of limiting friction.		
	6. For moderate speeds, friction remains constant but it decreases slightly for higher speeds.		
6	a)	1.5	

	Point is 'E' which is called as ultimate stress or ultimate strength point. Ultimate stress is the maximum stress the rod can with stand, thus this portion is called a strain hardening.		
9	 a) Elasticity: The ability of an object or material to resume or regain its normal shape or original shape after being stretched or compressed called Elasticity. b) Plasticity: he quality of being easily shaped or molded called Plasticity. c) Toughness: t is the state of being strong enough in the state of being strong enough end strong enough end strong enough end strong enough end strong end strong enough end strong end strong	1	3
10	order to withstand adverse conditions or rough handling called Toughness $K=E/3(1-2/m)=(150\times10^3)/3(1-2\times0.25)=100GPa$	1+1+1	3

PART C

	1	1	
		1	7
V	100 N 120 N		
	250 N		
	A B 0.2m 0.1m 0.1m 0.1m		
	Apply equilibrium equations		
	In X direction $\sum FX = 0 \Rightarrow R_A = 0$		
	In Y Direction $\sum FY = 0$		
	$\Rightarrow R_A + R_B - 100 - 160 = 0 \Rightarrow R_A + R_B = 260$	2	
	Moment about Z axis (Taking moment about axis pasing through A)	2	
	$\sum MZ = 0$		
	We get, $\sum MA = 0$		
	$0 + 250 + (100 \times 0.3) + 1200 \times 4 - R_B \times 0.5 = 0$		
	$R_B = 656 \text{ N} (\text{Upward})$	2	
	$\sum MB = 0$	1	
	$(R_A \times 0.5) + 250 - (100 \times 0.2) - (120 \times 0.1) = 0$		
	$R_A = -436$ (downwards)		
		2	7
VI	Friction is defined as the force that opposes the motion of a solid object	2	
	over another. There are mainly four types of friction: static friction,		
	sliding friction, rolling friction, and fluid friction.	1	
	Static Friction		
	Static friction is defined as the frictional force that acts between the		
	surfaces when they are at rest with respect to each other.		
	The magnitude of the static force is equal in the opposite direction		
	when a small amount of force is applied. When the force increases, at	1	
	some point maximum static friction is reached.		
	Static Friction Examples		
	Following are the examples of static friction:		
L			1

•	Skiing against the snow		
•	Creating heat by rubbing both the hands together		
•	Table lamp resting on the table		
<u>Slidin</u>	g Friction		
	g friction is defined as the resistance that is created between any bjects when they are sliding against each other.	1	
<u>Exam</u>	ples Of Sliding Friction		
Follow	wing are the examples of sliding friction:		
•	Sliding of the block across the floor		
٠	Two cards sliding against each other in a deck		
<u>Rollin</u>	ng Friction		
	ng friction is defined as the force which resists the motion of a ball eel and is the weakest types of friction.	1	
Exam	ples Of Rolling Friction		
Follow	wing are the examples of rolling friction:		
•	Rolling of the log on the ground		
•	Wheels of the moving vehicles		
Fluid	Friction		
	friction is defined as the friction that exists between the layers of aid when they are moving relative to each other.	1	
Exam	ples Of Fluid Friction		
Follow	wing are the examples of fluid friction:		
٠	The flow of ink in pens		
•	Swimming		
1			

	D 11/ 20 (2: 02 W				
		$\sin 25 = W$				
	R = W - 8.4					
		riction $F = \mu R$			1	
		$= \mu(W-8.452)$				
	μ (W-8.45)	2) = 18.126		(1)		
	When the	body is pushed the b	ody is in equilibri	um under the action of		
	forces give	en below				
	F					
	Resolving	the forces along the	plane			
	$F=\mu R_1=2$	$25\cos 25 = 22.657$				
					1	
	Resolving	forces normal to plan	ne		-	
	$\mathbf{R}_1 = \mathbf{W} + 2$	25 Sin 25 = W+10.56	5			
	μ (W+10.565) = 22.657(2)					
	Dividing equation (1) by (2)					
	22.657(W-	-8.452) = 18.126(W-2)	10.565)			
	W = 383/4	.53 = 84.547				
	Substitutir	ng value of W in (1)			1	
	μ= 18.126	/76.095 = 0.238				
					2	7
IX	Figure	Area	у	Ау		
	Tigure	mm ²	mm			
	1	120x30=3600	(30/2)+100=1	36000X115=		
			15	414000	2	
				L]		
					1	

Х							2	
	Fi g.	Area mm ²	IG _X =	IG _y =	<mark>ћ</mark> mm	Ah2		
	1	9500	$250x38^{3}/1$ 2 =1.14x10 ⁶	38x250 ³ /12 =4.95x10 ⁷	140.7	9500x140.7 ²		
	2	7500	$25x300^{3}/1$ 2 =5.62x10 ⁷	$300x25^{3}/12 = 3.9x10^{5}$	28.3	7500x28.3 ²		
	3	5700	$ \begin{array}{r} 150 x 38^{3} / 1 \\ 2 = 6.85 x 1 \\ 0^{5} \\ \end{array} $	$38x150^{3}/12 = 1.07x10^{7}$	197.3	5700x197.3 ²		
		∑A= 22700	$\sum IG_x$ =5.8x10 ⁷	$\sum IG_{y}$ =6.06x10 ⁷		$\sum A\overline{h}2=$ 4.15x10 ⁸		
		t						
	<.357- 	y 188 2 188 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ÿ <u> <u> </u> </u>					
	$\overline{h1} - (38 + 300 + 38) - (38/2) - 216.3$ $= 140.7 \text{mm}$ $\overline{h2} = 216.3 - (38 + \frac{300}{2})$							
$=2\overline{8.3}$ mm $\overline{h3} = 216.3 - (38/2)$ =197.3mm								

Fi g.	h mm	IG _x mm ⁴	IG _y mm ⁴	$A\overline{h}^{2}$	
1	140 .7	$250x38^{3}/12=1.14$ x10 ⁶	38x2503/12=4.95 x10 ⁷	9500x140.72	
2	28. 3	$25x300^{3}/12=5.62$ x10 ⁷	300x253/12=3.9x 10 ⁵	7500x28.32	
3	197 .3	$150x38^{3}/12=6.85$ x10	38x1503/12=1.07 x10 ⁷	5700x197.32	
		$\sum_{x} IG_{x} = 5.8 \times 10^{7}$	$\sum_{y} IG_{y} = 6.06 \times 10^{7}$	$\sum_{\substack{8\\10}} A\bar{h}^{2} = 4.15x$	
					2
_					1
x = 5.8x107 + 4.15x108 = $4.73x10^8 \text{mm}^4$					
	6.06×10	7mm4			

 $I_{AB} = I_G + A\bar{h}^{L}$

MOI of rectangle ABCD about AB				
$I_{AB} = I_G + Ah^2$				
$= (20 \times 25^2)/12 + (20 \times 25 \times (25/2)^2)$	1			
$= 104167 \text{cm}^4$				
MOI of semicircle about DC				
$I_{\rm DC} = (\pi d^4/64)/2$				
$=(1/2)\times(\pi\times 20^4)/64$	1			
$= 3925 \text{cm}^4$				
$h = 4r/3\pi$				
$=(4\times10)/3\pi$				
= 4.24cm				
Area of a semicircle = $\pi r^2/2$	1			
$=\pi \times 10^{2}/2$				
$= 157.1 \text{ cm}^2$				
MOI of semicircle about a lone through its CG parallel to CD				
$I_G = I_{DC} - Ah^2$	1			
$=(3925-157.1) \times 4.24^{2}$				
= 3925-2824.28				
$= 1100.72 \text{cm}^4$				
Distance of CG of semicircle from AB				
= 25-4.24				
= 20.76cm				
MOI of semicircle from AB				
$I_{AB} = I_G + Ah^2$				
$= 1100.72 + 157.1 \times 20.76^{2}$				
= 1100.72 + 67706.58				
$= 68807.30 \text{cm}^4$	1			
MOI of shaded portion about AB				
$= 104167-68807.30 = 35359.7 \text{cm}^4$				
	1			

XIII	L = 150 cm					
	D = 2cm					
	Area = $\pi/4(20)^2 = 100\pi \text{ cm}^2$					
	P = 20 kN					
	$E = 2 \times 10^5 \text{ N/mm}^2$					
	(i) Stress = $P/A = 20000/100\pi = 63.662 \text{N/mm}^2$					
	(ii) Strain $e = \sigma/E = 63.662/2 \times 10^5 = 0.000318$					
	(iii) Elongation dL= $e \times L = 0.000318 \times 150 = 0.0477$ cm	2				
		2				
XIV	L= 4m					
	b = 30mm					
	t = 20mm					
	$\mathbf{A} = \mathbf{b} \times \mathbf{t}$					
	$= 30 \times 20 = 600 \text{ mm}^2$					
	P = 30 kN = 30000 N					
	$E = 2 \times 10^5 \text{ N/mm}^2$					
	$\mu = 0.3$					
	Longitudinal strain $e = P/AE$					
	$= 30000/600 \times 2 \times 10^5 = 0.00025$					
	e = dL/L = 0.00025					
	$dL = 0.00025 \times 4000 = 1.0 \text{ mm}$					
	Poisson's ratio, μ = lateral strain / longitudinal strain					
	lateral strain = $0.3 \times 0.00025 = 0.000075$					
	$db = b \times lateral strain = 30 \times 0.0000075 = 0.00225$					
	mm.	1				
	$dt = t \times lateral strain = 20 \times 0.0000075 = 0.0015 mm.$					
		1	7			