SECOND SEMESTER DIPLOMA EXAMINATION IN ENGINEERING
 AND TECHNOLOGY
 (Common to AR / AU / CE / ME / MT / TD / WP)

ENGINEERING MECHANICS MODEL QUESTION PAPER

Time: 3 hours
Maximum Marks: 75

PART A
I. Answer all questions in one word or one sentence. Each question carries one mark.
($9 \times 1=9$ Marks)

1	An infinite straight line along which the force acts is called	MO1.01	R
2	A force of 10 kN is acting at $60 \square$ with vertical. Determine the horizontal and vertical component of force.	MO1.03	U
3	Define cantilever beam	MO2.01	R
4	No. of restraints in fixed beam is............	MO2.01	U
5	The position centroid of a triangular lamina from the base is	MO3.01	R
6	Name the moment of inertia about an axis(Izz) which is perpendicular to other the mutually perpendicular axes Ixx and Iyy.	MO3.05	U
7	Internal resistance offered by a body against external loading is called. \qquad	MO4.01	R
8	Ratio of lateral strain to linear strain is...........	MO4.05	R
9	The maximum value of static friction comes into play when a body just starts to slide over another is \qquad	MO4.06	R

PART B

II. Answer any eight questions from the following. Each question carries $\mathbf{3}$ marks

$$
\text { (} 8 \times 3=24 \text { Marks) }
$$

1	Differentiate scalar quantity and vector quantity	MO 1.02	R

2	Determine the magnitude of the reaction force R	MO1.03	U
3	State Varignons theorem	MO1.03	R
4	Define simply supported and cantilever beam.	MO2.01	R
5	Sate the laws of friction	MO2.05	R
6	Illustrate the center of gravity of the following solid bodies a) Hemisphere b) Cone	MO3.01	R
7	State perpendicular axis theorem	MO3.04	R
8	Draw the stress strain curve of steel and explain the terms a) Limit of proportionality b) Ultimate stress	MO4.02	R
9	Explain the following properties a) Elasticity b) Plasticity c) Toughness	MO4.04	R
10	The value of modulus of elasticity and poisons ratio of an alloy body is 150 GPA and 0.25 respectively. Determine the value of bulk modulus of the alloy.	MO4.05	U

PART C

Answer all questions. Each question carries seven marks

$$
\text { (} 6 \times 7=42 \text { Marks) }
$$

III	A boat is moved uniformly along a canal by two horses pulling with forces $\mathrm{P}=890 \mathrm{~N}$ and $\mathrm{Q}=1068 \mathrm{~N}$ acting under an angle $\alpha=$ 60°. Determine the magnitude of the resultant pull on the boat and the angles β and v.	MO1.03	A

\begin{tabular}{|c|c|c|c|}
\hline \& \(25^{\circ}\) to the horizontal, find the weight of the body and coefficient of friction. \& \& \\
\hline IX \& \begin{tabular}{l}
OR \\
Determine the moment of inertia about the centroidal axes of given I section beam given below. All dimensions in mm
\end{tabular} \& MO3.02

MO3.04 \& | U |
| :---: |
| |
| |
| |
| |

\hline XI \& | Determine the centroid of given section |
| :--- |
| OR | \& MO3.02 \& U

\hline XII \& Find out the moment of inertia of the shaded area in the figure about the base. \& MO3.04 \& A

\hline
\end{tabular}

ANSWER KEY

ENGINEERING MECHANICS MODEL QUESTION PAPER

PART A

Answer all the following questions
($9 \times 1=9$ Marks)
I

Q.No	Answer	Split up	Total Mark
1	Line of action of force	1	1
2	Vertical component = 10 Sin60 Horizontal component = 10 Cos60	1	1
3	A beam with one end fixed and other end free	1	1
4	3	1	1
5	h/3	1	1
6	Polar moment of inertia	1	1
7	Stress	1	1
8	Poisons ratio	1	1
9	Limiting friction	1	1

II.

PART B

Q.No	Answer	Split up	Total Mark
1	Scalars: only magnitude is associated.	1	
	Ex: time, volume, density, speed, energy, mass		
Vectors: possess direction as well as magnitude, and must obey the parallelogram law of addition (and the triangle law). Ex: displacement, velocity, acceleration, force, moment, momentum	1	1	3

2	$\frac{T}{\sin 31.4}=\frac{R}{\sin 110}=\frac{98.1 \mathrm{~N}}{\sin 38.6^{\circ}}$ $\begin{aligned} & T=81.9 \mathrm{~N} \\ & R=147.8 \mathrm{~N} \end{aligned}$	2 1	3
3	The moment of the resultant of two concurrent forces with respect to a center in their plane is equal to the algebraic sum of the moments of the components with respect to some centre.	3	3
4	simply supported beam is supported at both ends. One end of the beam is supported by hinge support and the other one by roller support. Cantilever beam is a structural member of which one end is fixed and other end is free	1.5 1.5	3
5	1. Friction always acts in the direction opposite to the motion or impending motion. 2. The limiting friction is directly proportional to the normal reaction. 3. Until the motion starts the static frictional force adjust itself to just balance the force tending to produce motion. 4. Friction is independent of the area of contact between the two surfaces but depends on the roughness of the surface. 5. Kinetic friction also bears a constant ratio with normal reaction but this ratio is slightly less than that in the case of limiting friction. 6. For moderate speeds, friction remains constant but it decreases slightly for higher speeds.		3
6	a)	1.5	

		1.5	3
7	The theorem states that the moment of inertia of a plane lamina about any two mutually perpendicular axes in its plane and intersecting each other at the point where the perpendicular axis passes through it. $\mathrm{I}_{\mathrm{zz}}=\mathrm{I}_{\mathrm{yy}}+\mathrm{I}_{\mathrm{xx}}$	3	3
8	 a)Limit of proportionality Point A, in this limit the stress is directly proportional to strain $\{\sigma \propto \mathrm{e}\}$, that means the steel rod obeys 'Hooke's law b)Ultimate stress	1	

	Point is 'E' which is called as ultimate stress or ultimate strength point. Ultimate stress is the maximum stress the rod can with stand, thus this portion is called a strain hardening.		
9	a)Elasticity: The ability of an object or material to resume or regain its normal shape or original shape after being stretched or compressed called Elasticity. b)Plasticity: he quality of being easily shaped or molded called Plasticity. c)Toughness: t is the state of being strong enough in order to withstand adverse conditions or rough handling called Toughness	1	3
10	$\mathrm{~K}=\mathrm{E} / 3(1-2 / \mathrm{m})=\left(150 \times 10^{3}\right) / 3(1-2 \times 0.25)=100 \mathrm{GPa}$	$1+1+1$	3

PART C

III \begin{tabular}{lll}

$\mathrm{P}=890 \mathrm{~N}, \alpha=60^{\circ}$
$\mathrm{Q}=1068 \mathrm{~N}$
$R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \cos \alpha\right)}$
$=\sqrt{\left(890^{2}+1068^{2}+2 \times 890 \times 1068 \times 0.5\right)}$
$=1698.01 \mathrm{~N}$

\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \frac{Q}{\sin \beta}=\frac{P}{\sin v}=\frac{R}{\sin (\pi-\alpha)} \\
\& \sin \beta=\frac{Q \sin \alpha}{R} \\
\& =\frac{1068 \times \sin 60^{\circ}}{1698.01} \\
\& =33^{\square} \\
\& \sin v=\frac{P \sin \alpha}{R} \\
\& =\frac{890 \times \sin 60^{\square}}{1698.01} \\
\& =27^{\square}
\end{aligned}
\] \& 2 \\
\hline \& OR \& \\
\hline IV \& \begin{tabular}{l}
In triangle \(\mathrm{ABC} \operatorname{Sin} \varphi=5 / 10=0.5\)
\[
\Phi=30^{\circ}
\] \\
Consider roller in equilibrium and apply condition of equilibrium
\[
\Sigma \mathrm{H}=0 \text { and } \Sigma \mathrm{V}=0
\] \\
Resolving forces horizontally
\[
\mathrm{FCos} 30-200=0
\] \\
Force in bar AB , \(\mathrm{F}=200 / \operatorname{Cos} 30=230.9 \mathrm{~N}\) \\
Resolving forces vertically \\
Rc -FSin30-100=0
\[
R c=230.9 \operatorname{Sin} 30+100=215.47 \mathrm{~N}
\]
\end{tabular} \& 1

2
1
1

\hline
\end{tabular}

			7
V			

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Resolving vertically,
\[
\Sigma \mathrm{V}=0
\] \\
\(\mathrm{S}_{5} \sin 45=\mathrm{S}_{2} \sin 45, \mathrm{~S}_{5}=113.137 \mathrm{kN}\) (Compression) \\
Resolving Horizontally,
\[
\begin{aligned}
\Sigma \mathrm{H} \& =0 \\
\mathrm{~S}_{6} \& =\mathrm{S}_{5} \operatorname{Cos} 45+\mathrm{S}_{2} \operatorname{Cos} 45 \\
\mathrm{~S}_{6} \& =113.137 \operatorname{Cos} 45+56.56 \operatorname{Cos} 45 \\
\& =120 \mathrm{KN}
\end{aligned}
\]
\end{tabular} \& 1

1 \& 1

1

\hline VIII \& | |
| :--- |
| Pull required, $\mathrm{P}=20 \mathrm{~N}$ |
| Inclination of pull, $\Phi=25^{\circ}$ |
| Push required $\mathrm{P}_{1}=25 \mathrm{~N}$ |
| Inclination of push, $\Phi=25^{\circ}$ |
| Resolving forces along the plane $\mathrm{F}=20 \cos 25^{\circ}$ |
| Resolving forces normal to plane $\mathrm{R}+20 \operatorname{Sin} 25=\mathrm{W}$ | \& 1 \&

\hline
\end{tabular}

$$
I_{A B}=I_{G}+A \bar{h}^{\angle}
$$

XIII	$\begin{aligned} & \mathrm{L}=150 \mathrm{~cm} \\ & \mathrm{D}=2 \mathrm{~cm} \end{aligned}$ Area $=\pi / 4(20)^{2}=100 \pi \mathrm{~cm}^{2}$ $\begin{aligned} & \mathrm{P}=20 \mathrm{kN} \\ & \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ (i) Stress $=\mathrm{P} / \mathrm{A}=20000 / 100 \pi=63.662 \mathrm{~N} / \mathrm{mm}^{2}$ (ii) Strain $e=\sigma / E=63.662 / 2 \times 10^{5}=0.000318$ (iii) Elongation $\mathrm{dL}=\mathrm{e} \times \mathrm{L}=0.000318 \times 150=0.0477 \mathrm{~cm}$	2 2 2	
XIV	$\begin{aligned} & \mathrm{L}=4 \mathrm{~m} \\ & \mathrm{~b}=30 \mathrm{~mm} \\ & \mathrm{t}=20 \mathrm{~mm} \\ & \mathrm{~A}=\mathrm{b} \times \mathrm{t} \\ & =30 \times 20=600 \mathrm{~mm}^{2} \\ & \mathrm{P}=30 \mathrm{kN}=30000 \mathrm{~N} \\ & \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\ & \mu=0.3 \end{aligned}$ Longitudinal strain $\mathrm{e}=\mathrm{P} / \mathrm{AE}$ $\begin{aligned} & \quad=30000 / 600 \times 2 \times 10^{5}=0.00025 \\ & e=d L / L=0.00025 \\ & d L=0.00025 \times 4000=1.0 \mathrm{~mm} \end{aligned}$ Poisson's ratio, $\mu=$ lateral strain / longitudinal strain $\text { lateral strain }=0.3 \times 0.00025=0.000075$ $\mathrm{db}=\mathrm{b} \times \text { lateral strain }=30 \times 0.0000075=0.00225$ mm. $\mathrm{dt}=\mathrm{t} \times \text { lateral strain }=20 \times 0.0000075=0.0015 \mathrm{~mm} .$	1 1 1 1 1 1 1 1 1 1	7

