FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING AND TECHNOLOGY
(Common to all Diploma Programmes)

MATHEMATICS II

MODEL QUESTION PAPER - SET-1

Time: 3 hours
Maximum Marks: 75

PART A

I. Answer all questions in one word or one sentence. Each question carries one mark.

$$
\text { (} 9 \times 1 \text { = } 9 \text { Marks) }
$$

1	Evaluate $\left\|\begin{array}{cc}\sin x & \cos x \\ \cos x & \sin x\end{array}\right\|$	M 1.01	U
2	Find A-B , if $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], B=\left[\begin{array}{cc}0 & -2 \\ -3 & -3\end{array}\right]$	M 1.03	U
3	If $\vec{a}=i+j+k, \vec{b}=2 i-j+3 k$. Find $\vec{a} \cdot \vec{b}$	M 2.02	U
4	Find unit vector in the direction of $\vec{a}=2 i+3 j+4 k$.	M 2.02	R
5	Evaluate $\int(2 x+3) d x$	M 3.01	R
6	Evaluate $\int \sec x(\sec x+\tan x) d x$	M 3.01	R
7	Evaluate $\int_{0}^{1} x d x$	M 3.03	U
8	Find order and degree of $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+\frac{d^{3} y}{d x^{8}}+5 \frac{d y}{d x}=y$	M 4.02	R
9	Solve $\frac{d y}{d x}=\frac{x}{y}$	M 4.02	U

PART B

II. Answer any eight questions from the following. Each question carries $\mathbf{3}$ marks

$$
\text { (} 8 \times 3=24 \text { Marks) }
$$

| 1 | If $\left\|\begin{array}{ccc}x & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 0 & 3\end{array}\right\|=\left\|\begin{array}{ccc}2 & -1 & 1 \\ 3 & 0 & 1 \\ -1 & 0 & 2\end{array}\right\|$, Find x. | M1.01 | U |
| :---: | :---: | :---: | :---: | :---: |

2	Find inverse of $\left[\begin{array}{ll}4 & 1 \\ 6 & 5\end{array}\right]$	M 1.03	U
3	Find a vector perpendicular to the vectors $\overrightarrow{\mathrm{a}}=2 i+3 j+4 k$ and $\vec{b}=i+j+k$	M 2.02	U
4	Find the angle between the vectors $6 i-3 j+2 k$ and $2 i+2 j-k$.	M 2.02	U
5	Find the work done by a force $\vec{F}=i+2 j+k$ acting on a particle which is displaced from a point with position vector $2 i+j+k$ to the point with position vector $3 i+2 j+4 k$.	M 2.03	U
6	Evaluate $\int \frac{\sin -{ }^{-1} 2 x}{\sqrt{1-4 m^{2}}} d x$	M 3.02	U
7	Evaluate $\int x \cdot \sin x d x$	M 3.02	U
8	$\int_{0}^{\pi / 2} \cos 4 x \cdot \cos x d x$	M 3.03	U
9	Obtain the area enclosed between the parabola $y=x^{2}-x-2$ and the $\mathrm{X}-\mathrm{axis}$.	M 4.01	U
10	Solve $\frac{d y}{d x}=\frac{x y^{2}+e x}{y x^{2}+y}$	M 4.02	A

PART C

Answer all questions. Each question carries seven marks

($6 \times 7=42$ Marks)

\begin{tabular}{|c|c|c|c|}
\hline V \& \begin{tabular}{l}
(a) A force \(\vec{F}=4 i-3 k\) passes through the point A whose position vector is \(2 i-2 j+5 k\). Find the moment of the force about the point B whose position vector is \(i-3 j+k\). \\
(b). Find area of the triangle formed by \(\mathrm{O}, \mathrm{A}\), and B when \(\overrightarrow{O A}=i+2 j+3 k\) and \(\overrightarrow{O B}=-3 i-2 j+k\) \\
OR \\
(a) The constant forces \(2 i-5 j+6 k,-i+2 j-k\) and \(2 i+7 j\) act on a particle from the position \(4 i-3 j-2 k\) to \(6 i+j-3 k\). Find the total workdone. \\
(b) Find a unit vector perpendicular to the vectors \(i-j+k\) and \(2 i+j-k\).
\end{tabular} \& \begin{tabular}{l}
M2.03 \\
M2.02 \\
M2. 03 \\
M2.02
\end{tabular} \& A \\
\hline \begin{tabular}{|c}
VII \\
\\
\\
VIII
\end{tabular} \& \begin{tabular}{l}
(a) Find angle between \(7 i-j+11 k\) and \(i+j+k\). \\
(b) Find the value of ' \(p\) ' so that two vectors \(2 i-3 j-k\) and \(4 i-p j-2 k\) are perpendicular to each other. \\
OR \\
(a) Find area of a parallelogram whose adjacent sides are determined by the vectors \(\vec{a}=i-j+3 k\) and \(\vec{b}=2 i-7 j+k\). \\
(b) Find the dot product of \(2 \mathrm{i}+3 \mathrm{j}-\mathrm{k}\) and \(\mathrm{i}-2 \mathrm{j}+4 \mathrm{k}\)
\end{tabular} \& M2.02

M2.02 \& R

R

\hline IX

X \& | (a) Evaluate $\int_{0}^{\pi} \frac{1-\sin x}{x+\cos x} d x$. |
| :--- |
| (b) Evaluate $\int_{0}^{\pi / 2} \cos ^{3} x d x$. |
| OR |
| (a) Evaluate $\int \frac{\left(\tan ^{-1} 5 x\right)^{2}}{1+25 x^{2}} d x$. |
| (b). Evaluate $\int_{0}^{\pi / 2} \sin 2 x \cdot \cos x d x$. | \& \[

$$
\begin{aligned}
& \text { M3.03 } \\
& \text { M3.02 } \\
& \text { M3.03 }
\end{aligned}
$$
\] \& U

U

\hline | XI |
| :---: |
| |
| |
| XII | \& | (a). Evaluate $\int_{0}^{3 \pi / 2} x \cdot \cos 3 x d x$ |
| :--- |
| (b) Evaluate $\int x^{2} \log x d x$ |
| OR |
| (a). Prove that $\int \sec x d x=\log (\sec x+\tan x)+c$ |
| (b). Evaluate $\int \frac{2 x^{4}}{1+x^{10}} d x$. | \& \[

$$
\begin{aligned}
& \hline \text { M3.03 } \\
& \text { M3.02 } \\
& \text { M3.02 }
\end{aligned}
$$
\] \& U

U

\hline
\end{tabular}

XIII	(a). Find area bounded by the curve $x=y^{2}-2 y$, the Y -axis and the abscissae at $y=1$ and $y=2$ (b) Solve $\frac{d y}{d x}+\sqrt{\frac{1-y^{2}}{1-x^{2}}}=0$	M4.01	A
		M4.02	
XIV	OR		
	(a). Find the area under the straight line $y=2 x+3$ bounded by the X -axis and the ordinates $=1$ and $x=3$.	M4.01	
	$\text { (b). Solve }{ }_{d x}^{d y} \mid y \cot x=\operatorname{cosec} x \text {. }$	M4.02	A

FIRST SEMESTER DIPLOMA EXAMINATION IN ENGINEERING AND TECHNOLOGY
(Common to all Diploma Programmes)

MATHEMATICS II

MODEL QUESTION PAPER - SET-2

Time: 3 hours

PART A

I. Answer all questions in one word or one sentence. Each question carries one mark.

($9 \times 1=9$ Marks)			
1	Evaluate $\left\|\begin{array}{cc}\sin \theta & -\cos \theta \\ \cos \theta & \sin \theta\end{array}\right\|$	M1.01	U
2	Subtract $\left[\begin{array}{cc}5 & 6 \\ -1 & 2\end{array}\right]$ from $\left[\begin{array}{cc}8 & -4 \\ -1 & 0\end{array}\right]$	M1.03	R
3	Find the sum of the vectors $\hat{\imath}-2 \hat{\jmath}+3 \hat{k}, 2 \hat{\imath}-3 \hat{\jmath}+\hat{k}$ and $-\hat{\imath}+2 \hat{\jmath}-3 \hat{k}$	M2.02	R
4	Find the length of the vector $\hat{\imath}-2 \hat{\jmath}+2 \hat{k}$	M2.02	U
5	Find $\int_{0}^{1} \frac{1}{1+x^{2}} d x$	M3.03	R
6	Find $\int \cos x d x$.	M3.01	R
7	Evaluate $\int_{0}^{\frac{n}{2}} \sin x d x$	M3.03	R
8	Find the order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}-2 y=0$	M4.02	R
9	Find the integrating factor of $\frac{d y}{d x}+\frac{y}{x}=x^{2}$	M4.02	A

PART B

II. Answer any eight questions from the following. Each question carries $\mathbf{3}$ marks

($8 \times 3=24$ Marks)

1	Solve by determinant method. $x+2 y-z=-3,3 x+y+z=4, x-y+2 z=6$	M1. 02	A
2	If $A=\left[\begin{array}{ccc}1 & 0 & 5 \\ -2 & 1 & 6 \\ 3 & 2 & 7\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -2 & 2 \\ 4 & 0 & 3 \\ 2 & 1 & 1\end{array}\right]$ then find $3 \mathrm{~A}+2 \mathrm{~B}$	M1. 03	U
3	If $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 4 & 9\end{array}\right]$ then show that $\mathrm{A}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$	M1. 03	U
4	Find a unit vector perpendicular to the vectors $\hat{\imath}+\hat{\jmath}+\hat{k}$ and $\hat{\imath}+3 \hat{j}-\hat{k}$	M2.02	U
5	Find the unit vector in the direction of $2 \hat{\imath}+3 \hat{j}-\hat{k}$	M2.02	R
6	If $\vec{a}=5 \hat{\imath}-\hat{\jmath}-3 \hat{k}, \vec{b}=\hat{\imath}+3 \hat{\jmath}-\hat{k}$ then show that the vectors $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular.	M2.02	A
7	Evaluate $\int \cos ^{3} x d x$	M3. 02	U
8	Find $\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x}{1+\tan x} d x$	M3.03	U
9	Integrate $x^{2} e^{x}$	M3.02	R
10	Solve $\frac{d y}{d x}=\frac{x y^{2}+x}{y x^{2}+y}$	M4. 02	A

PART C

Answer all questions. Each question carries seven marks

($6 \times 7=42$ Marks)

III	Solve using Cramer's rule $x+y-4 z=-8,-4 x+y+z=2, x-4 y+z=-3$ OR	M1.02	U
IV	(i) If $\left[\begin{array}{cc}a & a+b \\ 2 a-c & b+c\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ 7 & -2\end{array}\right]$, find a, b and c.	M1.03	R
	(ii) Solve $5 x+2 y=4,2 x-y=7$ by finding the inverse of the coefficient matrix	M1.03	U

\begin{tabular}{|c|c|c|c|}
\hline V \& \begin{tabular}{l}
(i) Find the values of \(\mathrm{x}, \mathrm{y}\) and z so that \(2 i+4 j-\mathrm{z} k=\mathrm{x} i+\mathrm{y} j+3 k\) \\
(ii) Find the dot product and the angle between the vectors \(7 \hat{\imath}-\hat{\jmath}+11 \hat{k}\) and
\[
\hat{\imath}+\hat{j}+\hat{k}
\] \\
OR \\
(i) Find the work done by a force \(\vec{F}=i+2 j+k\) acting on a particle which is displaced from a point with position vector \(2 i+j+k\) to the point with position vector \(3 i+2 j+4 k\) \\
(ii) Find value of ' \(\lambda\) ' so that \(2 i-5 j-k\) and \(3 i+\lambda j+k\) are perpendicular.
\end{tabular} \& \[
\begin{aligned}
\& \text { M2.01 } \\
\& \text { M2.02 } \\
\& \text { M2.03 } \\
\& \text { M2.02 }
\end{aligned}
\] \& \begin{tabular}{c}
R \\
U \\
\\
\\
\hline
\end{tabular} \\
\hline \begin{tabular}{|c}
VII \\
\\
\\
\\
VIII
\end{tabular} \& \begin{tabular}{l}
(i) If \(|\vec{a}|=5,|\vec{b}|=4,|\vec{a} \times \vec{b}|=10\),find the acute angle between \(\vec{a}\) and \(\vec{b}\) \\
(ii) If \(\vec{a}=2 \vec{i}+3 \vec{j}+4 \vec{k}, \vec{b}=-\vec{i}+3 \vec{j}+2 \vec{k}\) find the unit vector in the direction of the vector \(3 \vec{a}+4 \vec{b}\). \\
OR \\
(i) If \(\vec{a}=2 i+3 j-k\) find the length of the
\[
\text { vector } \overrightarrow{2 a}
\] \\
(ii) Find the moment about the point \\
\(\hat{\imath}+2 \hat{\jmath}-\hat{k}\) of the force represented by \\
\(\hat{i}+2 j+\hat{k}\) acting through the point \\
\(2 \hat{\imath}+3 \hat{\jmath}+\hat{k}\)
\end{tabular} \& \[
\begin{array}{|c|}
\hline \text { M2.02 } \\
\\
\text { M2.02 } \\
\\
\text { M2.01 } \\
\\
\\
\text { M2.03 }
\end{array}
\] \& \begin{tabular}{c}
R \\
\\
\hline
\end{tabular} \\
\hline IX

X \& \begin{tabular}{l}
Find (i) $\quad \int_{0}^{\pi / 2}(\sin x+\cos x) d x$

(ii) $\int x^{2} \log x d x$

OR

Find (i) $\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} \mathrm{dx}$

(ii) $\int \frac{\sin ^{3} x+\cos ^{3} x}{\sin ^{2} x \cos ^{2} x} d x$

 \&

M3. 03

M3. 02

M3. 03

M3. 01
\end{tabular} \& R

R

R

\hline
\end{tabular}

XI	(i) Find $\int x(x+1) d x$	M3.01	U
	(ii) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin 3 x \cos x d x$	M3.03	U
	OR		
XII	Find (i) $\int e^{\tan x} \sec ^{2} x d x$	M3.02	U
	(ii) $\int \frac{2 x+2}{x^{2}+2 x+1} d x$	M3. 02	U
XIII	Solve $\frac{d y}{d x}+y \cot x=2 \cos x$	M4.02	A
	OR		
XIV	Find the area bounded between one arch of the curve $y=\sin x$ and the x -axis.	M4. 01	A

