THIRDSEMESTERDIPLOMAEXAMINATIONINENGINEERINGANDT ECHNOLOGY
 (CommontoBM/EC/EL)

DIGITAL ELECTRONICS
 MODELQUESTIONPAPER-SET1

Time:3hours
MaximumMarks:75

PARTA

I. Answerallquestionsinonewordoronesentence.Eachquestioncarriesonemark.
(9x1=9Marks)

1	Decimal value of 10101 is..............	M 1.01	U
2	Write the 1's complement of 1101	M 1.01	U
3	Write the name of a universal logic gate and show its symbol	M 1.03	R
4	Name the logic family with least power dissipation	M 2.02	U
5	Number of control signals required for a 8 x 1 multiplexer is -----	M 2.04	U
6	Name the type of logic circuit in which the output depends up on only the present input	M 3.01	U
7	$\ldots \ldots \ldots$. shift register has one input line and one output line	M 3.03	U
8	In...............counter output is free from the clock signal.	M 4.01	U
9	Name the type of memory typically used to store working data in a computer	M 4.04	R

PARTB

II. Answeranyeightquestionsfromthefollowing.Eachquestioncarries3marks

(8x3=24Marks)

1	Add the following numbers a) $35+19$ b) $22.25+14.75$		M1.01
2	State the importance of universal gates. Give examples and show the conversion of NAND gate to NOT gate	M1.03	U
3	Reduce the expression Y= $\sum \mathrm{m}(0,2,3,4,5,6)$ using K map	M1.04	A
4	Write any three features of CMOS logic family	M2.02	U

5	Suggest a combinational logic circuit to select one data line at a time from two input data lines. Show the functional diagram and logic diagram	M2.04	A
6	Write the need for parallel adder. Draw the logic diagram of a 4 bit binary parallel adder	M2.04	U
7	Draw the logic symbol and truth table of a) D flip flop b) T flip flop. Mention their applications.	M3.02	U
8	Draw the logic diagram of 4 bit Johnson counter	M3.04	U
9	Write three differences between asynchronous counter and synchronous counter	M4.01	U
10	Write a brief note on different types of RAM	M4.04	U

PARTC

Answer all questions. Each question carries seven marks
($6 \times 7=42 \mathrm{Marks}$)

III	Perform the following operations (i)Convert (125) 10 complement method (iii) Convert (4BAC) $)_{16}$ to binary OR	M1.01	U
IV	Minimize the following expression using K map F(A,B,C,D) $=\sum \mathrm{m}(1,4,7,10,13)+\sum \mathrm{d}(5,14,15)$	M1.04	U
V	Beginning from the conversion table and with the help of K map design a 4 bit Binary to Gray code converter. OR	M2.04	U
VI	Mention the applications of Multiplexers and De multiplexers. With the help of logic diagram and truth table explain a 1 line to 4 line de multiplexer.	M2.04	U
VII	With the help of conversion table and K map show the conversion of JK flip flop to i) T flip flop and ii) D flip flop OR	M3.02	A
VIII	With necessary diagrams explain Johnson counter.	M3.04	U
IX	Write the difference between combinational and sequential logic circuits.	M3.01	U
X	With diagram explain the working of Parallel in - Serial out Shift register	M3.03	U
XI	With the logic diagram and timing diagram briefly explain a three bitripple down counter	M4.02	U

	OR		
XII	Write short notes on different types of Read Only Memories	M4.04	U
XIII	Design and implement a mode 10 asynchronous counter using T flip flops.	M4.02	A
XIV	Design and implement a 3 bit synchronous up counter.	M4.03	A

THIRDSEMESTERDIPLOMAEXAMINATIONINENGINEERINGANDT ECHNOLOGY
 (CommontoBM/EC/EL)

DIGITAL ELECTRONICS MODELQUESTIONPAPER-SET2

Time:3hours
MaximumMarks:75

PARTA

III. Answerallquestionsinonewordoronesentence.Eachquestioncarriesonemark.
(9x1=9Marks)

1	Binary equivalent of Hexadecimal 10 is...............	M1.01	U
2	Write the 2's complement of 1011	M 1.01	U
3	Write the name of logic gate whose output becomes high when anyone of its input becomes high	M 1.03	R
4	Name the fastest logic family	M 2.02	U
5	Number of control signals for a 4 x 1 multiplexer is -----	M 2.04	U
6	-------- -type of logic circuits require clock input	M 3.01	U
7	Shift registers use ---------- type flip flops.	M 3.03	U
8	Name the counter in which all the flip flops are triggered with same clock simultaneously	M 4.01	U
9	Number of flip flops required for a mod 10 asynchronous counter is ---- .-	M 4.02	U

PARTB

IV. Answeranyeightquestionsfromthefollowing.Eachquestioncarries3marks

(8x3=24Marks)

1	Convert the following hexadecimal numbers to decimal a) AB6 b) 124.56		M 1.01
2	State De Morgan's theorems.	U 1.04	U
3	Reduce the expression Y= $\overline{A B}+A \overline{\mathrm{~B}}+$ AB using K map	M 1.03	A
4	Define a) Propagation delay b) Fan out	M 2.02	U

5	Write the features of ECL logic family	M2.02	U
6	Starting from the truth table design an adder circuit for two binary inputs	M2.04	A
7	Draw the logic symbol and truth table of a) SR flip flop b) JK flip flop .	M3.02	U
8	List the applications of shift register and draw the diagram of 4 bit serial in - serial out shift register .	M3.03	U
9	Differentiate between Asynchronous counter and synchronous counter	M4.01	U
10	Compare RAM and ROM	M4.04	U

PARTC

Answer all questions. Each question carries seven marks

(6x7=42Marks)

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{III
IV} \& Implement AND, OR, NOT and XOR gates using NAND gates only \& M1.03 \& R

U

\hline \& | OR |
| :--- |
| Write any 7 laws of Boolean Algebra | \& M1.04 \& U

\hline V \& From the truth table design a full adder. \& M2.04 \& A

\hline VI \& | OR |
| :--- |
| From the function table write the expression for the output of a 4×1 multiplexer and draw the logic diagram . | \& M2.04 \& A

\hline VII \& | Drawthe function diagram and truth table of JK, D, and T flip flops |
| :--- |
| OR | \& M3.02 \& U

\hline VIII \& Explain any two types of shift registers with diagrams. \& M3.03 \& U

\hline IX \& | Explain the working of SR flip flop with the help of a diagram using NAND gates. |
| :--- |
| OR | \& M3.02 \& U

\hline X \& Briefly explain the working of a ring counter with the diagram and truth table \& M3. 03 \& U

\hline XI \& With the logic diagram and timing diagram briefly explain a three bit ripple up counter \& M4.02 \& A

\hline
\end{tabular}

	OR		
XII	Write short notes on ROM, PROM, EPROM, EEPROM		
XIII	Design a mod 6 asynchronous counter using T flip flop.	M4.04	U
XIV	Design a synchronous mod 8 down counter using JK flip flop.	A	

