SL NO. 3/Sem 4/I

MODEL QUESTION PAPER I INDUCTION MACHINES

Time : 3 Hours

Max.Marks: 75

PART A

I. Answer all questions in one word or one sentence

(9 x 1 = 9 Marks)

1	List the two types of transformer based on construction.	M1.01	R
2	Write EMF equation of a transformer.	M1.02	R
3	Name the test used to measure the full load copper loss of the transformer.	M2.01	R
4	Define all day efficiency.	M2.02	R
5	Name the phenomenon in which a three phase induction motor has a tendency to run at very low speed compared to its synchronous speed	M3.02	R
6	List the two types of rotor construction used in three phase induction motors.	M3.01	R
7	Write the equation for calculating synchronous speed of rotating magnetic field.	M3.01	R
8	Name the test used to measure the no load losses in a three phase induction motor.	M4.01	R
9	List any two applications of three phase induction motor.	M4.04	R

PART B

II. Answer any *eight* questions from the following. Each question carries 3 marks.

(8x 3 = 24 Marks)

1	Explain the working principle of a transformer with a neat	M1.01	R
	figure.		
2	An ideal transformer has a primary winding of 100 turns and	M1.02	А
	secondary winding of 50 turns. The voltage applied to the		
	primary winding of the transformer is 230V and the secondary		
	winding is connected to an 1150W load. Calculate the current		
	carried by the primary winding of the transformer.		
3	Sketch the equivalent circuit of a single phase transformer with	M1.04	R
	resistance and leakage reactance and indicate the different		
	parameters.		
4	Explain the working of a current transformer with the help of a	M2.03	U
	neat sketch.		
5	Illustrate the connection diagram of a three phase star-delta	M2.04	U
	transformer bank using three single phase transformers by		
	indicating the polarity of the transformers.		
6	Explain the production of rotating magnetic field using neat	M3.01	U
	figures.		
7	Illustrate the power flow diagram in a three phase induction	M3.03	U
	motor.		
8	A 4 pole, 50Hz, 415V, three phase induction motor is running	M3.01	U
	at a speed of 1450 rpm. Calculate the frequency of the EMF		
	induced in the rotor in Hz.		
9	Draw the circuit diagram used to carry out a blocked rotor test	M4.01	R
	on a three phase induction motor.		
10	Explain the various braking methods used in a three phase	M0	U
	induction motor.	4.03	

варт	0
PART	C

Answer ALL questions. Each question carries 7 marks.

(6x 7 = 42 Marks)

III	Draw and explain the phasor diagram of a practical transformer	M1.03	U
	connected to a capacitive load.		
	OR		
IV	A single-phase, 250kVA, 11kV/415V, 50Hz transformer has 80	M1.02	U
	turns on the secondary. Calculate the		
	(a) approximate values of the primary (high voltage side) and		
	secondary currents at full load		
	(b) approximate number of primary turns and		
	(c) maximum value of the flux.		
V	Derive the equation for saving copper in an autotransformer.	M2.03	R
	OR		
VI	Explain Open circuit Test and Short Circuit Test on single phase	M2.01	U
	transformer with the help of circuit diagram.		
VII	In a 50kVA, 11kV/400V, single-phase transformer the iron and	M2.02	А
	copper losses are 500 W and 600 W respectively under rated		
	conditions. Calculate the		
	(a) efficiency at unity power factor at full load		
	(b) load at which maximum efficiency occurs and		
	(c) iron and copper losses at this load		
37111		M2 01	
VIII	A TOKVA, 200V/400V, 50Hz, single-phase transformer has the	M2.01	А
	following test results :		
	OC test (HV winding open): 200 V , 1.3 A , 120 W .		
	SC test (LV winding shorted): 22 V, 30 A, 200 W.		
	Calculate (a) the magnetizing current, and (b) the equivalent		
	resistance and leakage reactance as referred to the low voltage		
	side.		

IX	Draw and explain the torque slip characteristics of three phase	M3.02	U
	induction motor.		
	OR		
Х	A 480V, 60 Hz, 50hp, three phase induction motor is drawing 60A	M3.03	А
	at 0.85 PF lagging. The stator copper losses are 2 kW and the rotor		
	copper losses are 700 W. The friction and windage losses are 600		
	W, the core losses are 1800 W, and the stray losses are negligible.		
	Find the following quantities:		
	1. The air-gap power		
	2. The output power		
	3. The efficiency of the motor		
XI	Explain the various steps to construct circle diagram of three phase	M4.01	U
	induction motor with the help of a neat sketch.		
	OR		
XII	Explain the working of a DOL starter with the help of a neat	M4.02	U
	figure.		
XIII	Explain the constructional features and equivalent circuit of double	M4.04	U
	cage induction motor.		
	OR		
XIV	Describe methods of speed control used for squirrel cage	M4.03	U
	induction motor		

QUESTION PAPER I PREPARED BY:	SCRUTINISED BY:
Gjorish	RE
Girish P R	T I D
Lecturer in EEE	Jayaprakasan P
GPTC Kottayam	Lecturer in EEE
	KGPTC Kozhikode

BLUE PRINT

Mark distribution

	H	(h: /	TYPE OF QUESTIONS							
Mod	r/ M	$ \begin{array}{c c} \text{M} & (n17) \\ \text{M} & \sum \text{Hi} \\ \text{od} & * \\ \text{ul} & 123 \\ \text{e} & \\ \end{array} $	PART	Γ A	PART	ГВ	PART	C	TOTA	A L
ule	od ul e		No of Question s	Mark s	No of Question s	Mark s	No of Question s	Mark s	No of Question s	Mark s
			2		3		2		7	
Ι	14	29.6 9		2		9		14		25
	15		2		2		4		8	
II		31.8 1		2		6		28		36
			3		3		2		8	
III	14	29.6 9		3		9		14		26
			2		2		4		8	
IV	15	31.8 1		2		6		28		36
Tota	59		9		10		12		31	
l	30	123	= = = = = = = = = = = = = = = =	9		30		84		123

Cognitive Level Wise Question Analysis

Cog nitiv e Leve l	0/	0/	TYPE OF QUESTIONS								
	90 M	Ma	PART	Γ A	PART	В	PART	C	TOTA	A L	
	ar ks	rks	No of Question s	Mark s							
			9		3		1		13		
R	30	36. 9		9		9		7		25	
	50		0		6		8		14		
U		61. 5		0		18		56		74	
				0		1		3		4	
A	20	24. 6		0		3		21		24	
Tota	10		9		10		12		31		
1	0	123		9		30		84		123	

Mark Distribution

Question Wise Analysis

Q.No	Module Outcome	Cognitive Level	Marks	Time
I.1	M1.01	R	1	2
I.2	M1.02	R	1	2
I.3	M2.01	R	1	2
I.4	M2.02	R	1	2
I.5	M3.02	R	1	2
I.6	M3.01	R	1	2
I.7	M3.01	R	1	2
I.8	M4.01	R	1	2

I.9	M4.04	R	1	2
II.1	M1.01	R	3	7
II.2	M1.02	А	3	7
II.3	M1.04	R	3	7
II.4	M2.03	U	3	8
II.5	M2.04	U	3	8
II.6	M3.01	U	3	8
II.7	M3.03	U	3	7
II.8	M3.01	U	3	7
II.9	M4.01	R	3	7
II.10	M4.03	U	3	7
III.	M1.03	U	7	17
IV.	M1.02	U	7	17
V	M2.03	R	7	17
VI	M2.01	U	7	17
VII	M2.02	А	7	17
VIII	M2.01	А	7	17
IX	M3.02	U	7	17
X	M3.03	А	7	17
XI	M4.01	U	7	17
XII	M4.02	U	7	17
XIII	M4.04	U	7	17
XIV	M4.03	U	7	17
	Total	123	295	

SL NO. 3/Sem 4/II

MODEL QUESTION PAPER II

INDUCTION MACHINES

Time : 3 Hour

Max.Marks: 75

PART A

I. Answer all questions in one word or one sentence. Each question carries 1 mark.

(9 x 1 = 9 Marks)

1	The transformer works on the principle of	M1.01	R
2	Which material is used for making lamination of the transformer core?	M1.01	R
3	Define transformation ratio of the transformer.	M1.02	R
4	The open-circuit test in a transformer is used to measure	M2.01	R
5	Define voltage regulation of transformers.	M2.02	R
6	The frame of an induction motor is usually made of	M3.01	R
7	Name the condition for maximum torque in the induction motor.	M3.02	R
8	For which induction motor, rotor resistance speed control method is not applicable.	M4.03	R
9	The advantage of the double squirrel cage induction motor over a single cage rotor is that its	M4.04	R

PART B

I. Answer any *eight* questions from the following. Each question carries 3 marks. (8 x 3 = 24 Marks)

1	Explain the concept of the ideal transformer.	M1.01	U
2	Explain the classification of transformer on the basis of	M1.02	U
	construction.		
3	List the applications of Auto transformers.	M2.03	R
4	Explain the conditions for parallel operation of three phase	M2.04	U
	transformers.		
5	Define starting torque and pull out torque of an induction motor.	M3.02	R
6	Illustrate the power stages of a three phase induction motor.	M3.03	U
7	Draw equivalent circuit of three phase induction motor.	M3.04	R
8	Explain the need of starters in the induction motor and list any two	M4.02	U
	starters used for the induction motor		
9	Explain any two methods of braking of the induction motor.	M4.03	R
10	Explain the construction of a double cage induction motor.	M4.04	R

III	Derive the emf equation of a transformer	M1.02	U
	OR		
IV	Draw and explain the vector diagram of a transformer with	M1.03	U
	resistance and leakage reactance on resistive load.		
V	A 3 phase, 50Hz, 11000/415V Delta/Star, 6kVA transformer	M1.02	А
	is operating with a flux of 0.05Wb. Find (i) number of HV		
	and LV turns per phase (ii) EMF per turn (iii) Full load HV		
	and LV phase currents.		
	OR		
V1	A 25kVA 2200/220V, 50Hz single phase transformer has the	M1.04	А
	following resistance and leakage reactance. $R_1 = 0.8\Omega$, $R_2 =$		
	0.009Ω , $X_1 = 3.2\Omega$, $X_2 = 0.03\Omega$. Calculate equivalent		
	resistance referred to primary and secondary and equivalent		
	reactance referred to primary and secondary.		

PART C Answer <u>*ALL*</u> questions. Each question carries 7 marks. (6 x 7 = 42 Marks)

VII	Identify a test to find the core loss of the transformer and	M2.01	А
	explain it.		
	OR		
VIII	The following test results were obtained for a 50kVA	M2.01	А
	transformer:		
	Open-circuit test: primary voltage=3300 V; secondary		
	voltage=400 V; power=430 W		
	Short-circuit test: primary voltage=124 V; primary		
	current=15.3 A; power=525W; secondary current = full-load		
	current		
	Calculate: (a) the efficiency at full load for 0.7 power factor; (b)		
	the efficiency at half load for 0.7 power factor.		
IX	Explain with figure, the working of an autotransformer	M2 03	II
	Explain with figure, the working of an autotransformer.	112.05	U
	OR		
Х	Explain the different cooling methods of transformer.	M2.04	U

X1	Explain the construction of three phase induction motor	M3.01	U
	OR		
XII	A 4 pole, 3 phase induction motor operates from a supply	M3.01	U
	whose frequency is 50Hz. Calculate (i) the speed of the stator		
	magnetic field (ii) rotor speed at 5% slip (iii) frequency of		
	rotor currents when the slip is 2%.		
N/III		M4.01	TT
	Explain the blocked rotor test of a 3-phase induction motor.	M4.01	U
	OR		
XIV	Describe methods of speed control used for slip ring induction	M4.03	U
	motor.		

BLUE PRINT

		(h; /			ТҮ	PE OF (QUESTION	IS		
Mod ule	Hr / Mod	(mi / ∑Hi)	PAR	ТА	PAR	ТВ	PAR	ТС	тот	AL
	ule	* 123	No of Questions	Marks	No of Questions	Marks	No of Questions	Marks	No of Questions	Marks
			3		2		4		9	
Ι	14	29.6 9		3		6		28		37
	15		2		2		4		8	
II		31.8 1		2		6		28		36
	14		2		3		2		7	
III		29.6 9		2		9		14		25
			2		3		2		7	
IV	15	31.8 1		2		9		14		25
Tota	59		9		10		12		31	
1	58	123		9	1	30	1	84	1	123

Mark Distribution

Cognitive Level Wise Question Analysis

Mark Distribution

					TY	PE OF (QUESTION	IS			
Cogn itive Level	% Mar	Mar	PAR'	ТА	PAR	Т В	PAR	ТС	тот	AL	
	ks	ks	No of Questions	Marks	No of Questions	Marks	No of Questions	Marks	No of Questions	Marks	
D	30	20		9		5		0		14	
ĸ		36.9		9		15		0		24	
TT	50		0		5		8		13		
	50	61.5		0		15		56		71	
•	20		0		0		4		4		
A	20	24.6		0		0		28		28	
Tota l	100		9		10		12		31		
	100	123		9		30		84		123	

Question Wise Analysis

Q.No	Module Outcome	Cognitive Level	Marks	Time
I.1	M1.01	R	1	2
I.2	M1.01	R	1	2
I.3	M1.02	R	1	2
I.4	M2.01	R	1	2
I.5	M2.02	R	1	2
I.6	M3.01	R	1	2
I.7	M3.02	R	1	2
I.8	M 4.03	R	1	2
I.9	M4.04	R	1	2
II.1	M1.01	U	3	7
II.2	M1.02	U	3	7
II.3	M2.03	R	3	7
II.4	M2.04	U	3	8
II.5	M3.02	R	3	7
II.6	M3.03	U	3	7
II.7	M3.04	R	3	7
II.8	M4.02	U	3	7
II.9	M4.03	R	3	8
II.10	M3.04	R	3	8
III.	M1.02	U	7	17
IV.	M1.03	U	7	17

V	M1.02	A	7	16
VI	M1.04	А	7	14
VII	M2.01	А	7	17
VIII	M2.01	А	7	15
IX	M2.03	U	7	17
X	M2.04	U	7	20
XI	M3.01	U	7	20
XII	M3.01	U	7	14
XIII	M4.01	U	7	20
XIV	M4.03	U	7	17
	Total		123	295

SCORING INDICATORS MODEL QUESTION PAPER I INDUCTION MACHINES

QUES	SCORING INDICATORS	SPLIT	SUB	TOT
TION		UP	ΤΟΤΑ	AL
NUM		MARK	L	MAR
BER		S		KS
	I. PART A			
I. 1	Core Type Transformer and shell type transformer	1		9
2		1		
	$E = 4.44 * f * \phi_{12} * N$			
	5 7.52			
3	Short Circuit Test	1		
3	All day afficiency is determined as total KWh at the secondary	1		
- 4	An day efficiency is determined as total Kwil at the secondary			
	specific time period preferably 24 hrs			
5	Crawling	1		
6	Squirrel Cage rotor and slip ring rotor	1		
7	Squirier Cage rotor and sup ring rotor	1		
	120 * f			
	$N_{5} = \frac{120}{7}$			
	P			
8	No load test	1		
9	Pumps, conveyors, elevators, lathes etc (any two)	1		
	II. PART B			1
II. 1		2(figure	3	24
	Transformer Working)+		
	Laminated Core	1(expla		
		nation)		
	·			
	Secondary			
	Primary			
	www.CircuitsToday.com			
	(Reference: www.circuitstoday.com)			
	Transformer is an electrical device which works on the principle			
	of mutual induction. It consists of two or more coils of insulated			
	wire wound on a laminated steel core. When voltage is			
	introduced to one coil, called the primary, it magnetizes the iron			
	core. A voltage is then induced in the other coil, called the			

	secondary or output coil. The change of voltage (or voltage			
	ratio) between the primary and secondary depends on the turns			
	ratio of the two coils.			-
2.	Secondary voltage, $V2 = (N2/N1)*V1$	2(for	3	
	V2=115V	steps)+		
	Secondary current, I2= 1150/115=10A	1(for		
	Primary current, $I1 = (N2/N1)*I2=5A$	I1)		
3.		2(for	3	
	Z_1 Z_2	circuit)		
	\overrightarrow{R} \overrightarrow{X} $\overrightarrow{X'}$ \overrightarrow{R}	+		
		1(for		
	I_1 I_2	paramet		
	$I_w \checkmark I_\mu$	ers)		
	\mathbf{R}_{0} \mathbf{R}_{0} \mathbf{X}_{0} $\mathbf{E}_{1} = \mathbf{E}_{2}$ \mathbf{V}_{2}			
	www.electricaleasy.com			
	+ mmolocal cardacy com +			
	(Pataranaa waway alastriaslassy som)			
	R0 and X0 Denotes core loss component and magnetizing			
	component respectively			
	R1 X1 denotes primary side resistance and reactance			
	respectively			
	R2 X2 denotes secondary side resistance and reactance			
	respectively			
	respectively			
4.	Current transformers reduce high voltage currents to a much	2(figure	3	
	lower value and provide a convenient way of safely monitoring)	-	
	the actual electrical current flowing in an AC transmission line	+		
	using a standard ammeter.	1		
	The current transformer consists of only one or very few turns as	(
	its primary winding. This primary winding can be of either a	explana		
	single flat turn, a coil of heavy duty wire wrapped around the	tion)		
	core or just a conductor or bus bar placed through a central hole.	,		
	Main Primary Conductor			
	Tall			
	^{IP} ↓ I _S			
	Secondary			
	Winding			
	₩			
	I			
	(Reference : www.electrical4u.com)			

8.	Synchronous speed of RMF, Ns= 120*f/P=1500rpm Slip=(Ns-Nr)/Ns=0.033 Rotor EMF frequency = s*f=1.67Hz	1(for Ns)+ 1(for slip)+ 1(for rotor EMF frequen cy)	3	
9.	Reduced Supply Voltage Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Supply Voltage Reduced Reduced Supply Voltage Supply Voltage Supply Voltage Supply Suppl	2(for instrum ents)+ 1(for showin g blocked rotor)	3	
10.	 Regenerative Braking If the rotor speed becomes greater than synchronous speed than the relative speed between the rotor 	1*3=3	3	
	 speed, then the relative speed between the rotor conductor and air gap rotating field reverse and the power will be fed back to supply. Plugging or reverse voltage braking When the phase sequence of supply of the motor running at speed is reversed by interchanging the connection of any two phases of the stator on the supply terminal. Dynamic Braking The stator of induction motor is connected across the DC supply, which produces a stationary magnetic field. The machine therefore works as a generator and the generated energy is dissipated in the rotor circuit resistance, thus giving the dynamic braking. 			

	PART C			
III.	$V_{1} = V_{2} + I_{2}r_{2} + J_{1}r_{2}x_{2},$ $V_{1} = V_{1}r_{2} + J_{1}r_{2}x_{2},$ $V_{2} = V_{2}r_{2} + J_{2}r_{2}x_{2},$ $V_{1} = V_{1}r_{2} + J_{2}r_{2}x_{2},$ $V_{2} = V_{2}r_{2} + J_{2}r_{2}x_{2}$	4(for figure) + 3(for explana tion)	7	42
	OR			
IV	Primary current , I1= 250*/11=22.7A Secondary current, I2= 250*1000/415= 602A Number of primary turns, N1=(V1/V2)*N2=2120 Maximum value of flux, =V2/(4.44*f*N2)=23.4mWb	1(for I1)+ 1(for I2)+ 2(for N1)+ 3(for flux)	7	

	OR			
VI	w	2(for	7	
	Autotransformer V LV Winding HV Winding	figure) + 2(for explana tion and equatio n)		
	(Reference: www.circuitglobe.com) OC Test: The purpose of the open-circuit test is to determine the no-load current and no load losses of the transformer. This test is normally performed on the Low voltage side of the transformer. The wattmeter, ammeter and the voltage are connected to the LV winding. The nominal rated voltage is supplied to the LV winding with the HV side kept open.			
	(Reference: www.circuitglobe.com) SC Test:	2(for figure) + 1(for explana tion and equatio n)		
	copper losses of the transformer. The short circuit test is performed on the high voltage winding of the transformer. The measuring instrument like wattmeter, voltmeter and ammeter are connected to the high voltage winding of the transformer. The low voltage winding is short-circuited by the help of thick strip.			
VII	At full load upf, output power = $50*1=50$ kW At full load input= output power + core loss+ copper loss Input power= $50+0.5+0.6=51.1$ kW Efficiency at full load upf = output power/input power= 50/51.1=97.85% Load for maximum efficiency = $\sqrt{\frac{coreloss}{copperloss}}*50 = \sqrt{\frac{500}{600}}*50 = 45.6$ kVA	1(for input power) + 2(for efficien cy)+ 2(load for maxim um	7	

	Iron loss and copper loss at this load = 500W	efficien cy)+ 2(for iron and copper loss)		
	OR			
VIII	Turns ratio, k=2 No load power factor = $(120/(200*1.3))= 0.46$ Working current= I0* no load pf=1.3*0.46=0.6A Magnetizing current = $I_m = \sqrt{I_0^2 - I_w^2} = 1.15A$ HV side Resistance = $200/(30*30)= 0.22$ ohm LV side resistance = $0.22/(k^2)=0.055$ ohm HV side impedance= $V/I=22/30=0.73$ ohm HV side reactance= $\sqrt{0.73^2 - 0.22^2} = 0.696$ ohm LV side reactance = $0.696/k^2=0.174$ ohm	1(for no load pf)+ 2(for magneti zing current) + 2(for LV side resistan ce)+ 2(for LV side reactan	7	
IX	500% 400% 300% Starting torque 200% 100% General speed The induced torque is zero at synchronous speed. The curve is nearly linear between no-load and full load. In this	4(For figure) + 3(for explana tion)	7	

	range, the rotor resistance is much greater than the reactance, so the rotor current, torque increase linearly with the slip. There is a maximum possible torque that can't be exceeded. This torque is called <i>pullout torque</i> and is 2 to 3 times the rated full- load torque. The torque of the motor for a given slip varies as the square of			
	the applied voltage.			
	OR		· · _	
X	Input power, $P_{in} = \sqrt{3}V_{L}I_{L}\cos\theta$ $= \sqrt{3} \times 480 \times 60 \times 0.85 = 42.4 \text{ kW}$ Air gap power. $P_{AG} = P_{in} - P_{SCL} - P_{core}$ $= 42.4 - 2 - 1.8 = 38.6 \text{ kW}$ Converted power, $P_{com} = P_{AG} - P_{RCL}$ $= 38.6 - \frac{700}{1000} = 37.9 \text{ kW}$ Output power, $P_{out} = P_{com} - P_{F\&W}$ $= 37.9 - \frac{600}{1000} = 37.3 \text{ kW}$ Efficiency of the motor $\eta = \frac{P_{out}}{P_{in}} \times 100\%$ $= \frac{37.3}{42.4} \times 100 = 88\%$	1(for input power) + 2(for airgap power) + 2(for output power) + 2(for efficien cy)	7	

XIII		4(for	7	
		constru	,	
	Outer cage High R	otional		
	Cyc 26 San Low X	cuonar		
	m30)(0,5m)	features		
	291 1 22 34)		
	m v v cm	·		
	m and			
	En () En			
	5.0 4			
	62 03	+		
	and the second second			
	SAP 1/ AL CAS			
	22012			
	Inner cage			
	Low R High X			
	(Reference:www.electricaleasy.com)			
	A rotor of double cage motor carries two squirrel cage windings			
	embedded in two rows of slots.			
	The outer slots contain high registence and low reactines.	3(for		
	The outer slots contain high resistance and low reactance	equival		
	conductors and inner cage have low resistance and high	equival		
	reactance conductors.	ent		
	At starting rotor has the same frequency as that of stator. Hence	circuit)		
	reactance of inner cage winding becomes higher than that of the			
	outer ange			
	The second secon			
	Thus rotor current is forced to flow through the outer cage to			
	produce sufficiently high starting torque.			
	At normal speed since frequency of rotor reduces to a low value			
	the reactance of inner case and hence impedance reduces to a			
	very low value			
	very low value.			
	Then rotor current is forced to flow through the inner cage to			
	produce sufficiently high running torque.			
	R1 X1			
	$\sum_{\mathbf{R}} \leq \mathbf{J}_{\mathbf{Y}_{n}} \qquad \mathbf{J} \mathbf{J}_{n} $			
	$V_1 \xrightarrow{\Lambda_0} \sum \sum_{\mathbf{F}'_2} '_{20} \psi \psi '_{2i}$			
	R'20/s > >,			
	<u>ל</u> כה לה			
	Fig: Equivalent circuit of double cage induction motor			
		l	I	

OR					
XIV	1. Changing Applied Voltage		7		
	This method, even though easiest, it is rarely used. The reasons	1(for			
	are (a) for a small change in speed, there must be a large	voltage			
	variation in voltage. (b) This large change in voltage will result	control)			
	in large change in flux density	+			
	2. Changing Applied Frequency	2(for			
	The synchronous speed of the induction motor is given by Ns =	frequen			
	120f/P. So from this relation, it is evident that the synchronous	cy			
	speed and thus the speed of the induction motor can by varied by	control)			
	the supply frequency.	+			
	3. Changing Number Of Stator Poles	2(for			
	The number of poles is inversely proportional to the speed of the	pole			
	motor. This change of number of poles can be achieved by	changin			
	having two or more entirely independent stator windings in the	g)+			
	same slots. Each winding gives a different number of poles and	2(V/f			
	hence different synchronous speed.	control)			
	4. V/f control:				
	The voltage and frequency are varied in proportion so that the				
	flux density remains constant.				

Scoring Indicators

Model Question Paper II

INDUCTION MACHINES

Revision: 2021							
INDU	INDUCTION MACHINES						
Qs No	Scoring indicator	Split up score	Sub Total	Total			
I	PART A			9			
1	Electromagnetic induction	1					
2	Silicon Steel	1					
3	Transformation ratio of a transformer is the ratio of secondary voltage to primary voltage.	1					
4	Core loss	1					
5	Voltage Regulation of transformers is the percentage change in its secondary terminal voltage compared to its original no-load voltage under varying secondary load conditions.	1					
6	Cast iron	1					
7	$S \times X_2 = R_2$	1					
8	Squirrel cage induction motor	1					
9	Starting current is low.	1					
	<u>PART B</u>						
II 1	A transformer that doesn't have any losses like copper and core		3	24			
1	is known as an ideal transformer. In this transformer, the output	Fig-1	5				
	power is equivalent to the input power. The efficiency of this	Expl					
	transformer is 100%, which means there is no loss of power	anati					
	within the transformer.	on-2					
	The properties of an ideal transformer include the following.						
	• • The two windings of this transformer have small						
	resistance.						
	• • Because of the resistance, eddy current and hysteresis						

outer cage. Thus rotor current is forced to flow through the outer cage to produce sufficiently high starting torque. At normal speed since frequency of rotor reduces to a low value the reactance of inner cage and hence impedance reduces to a very low value. Then rotor current is forced to flow through the inner cage to produce sufficiently high running torque. PART C III 42 Let ϕ_m be the maximum value of flux in Weber f be the supply frequency in Hz 7 N_1 is the number of turns in the primary winding 7 N₂ is the number of turns in the secondary winding Φ is the flux per turn in Weber 1/f

As shown in the above figure that the flux changes from + φ_m to – φ_m in half a cycle of 1/2f seconds. By Faraday's Law Let E1 be the emf induced in the primary winding $\mathbf{E}_1 = -\frac{\mathrm{d}\Psi}{\mathrm{d}t}\dots\dots\dots(1)$ Where $\Psi = N_1 \phi$ Therefore, $E_1 = -N_1 \frac{d\phi}{dt}$ (2) Since ϕ is due to AC supply $\phi = \phi_m$ Sinwt $E_1 = -N_1 \frac{d}{dt} (\phi_m \text{ Sinwt})$ $E_1 = -N_1 W \phi_m Coswt$ $E_1 = N_1 w \phi_m Sin(wt - \pi/2) \dots \dots (3)$ Maximum valve of emf $E_1 \max = N_1 w \varphi_m \dots \dots \dots (4)$ But $w = 2\pi f$ $E_1 max = 2\pi f N_1 \varphi_m \dots \dots \dots (5)$ Root mean square RMS value is Putting the value of E1max in equation (6) we get $E_1 = \sqrt{2\pi f N_1 \phi_m \dots (7)}$

V	Maximum value of flux, $\phi m = 0.05$ Wb (ii) EMF per turn = 4.44f $\phi m = 11.1$ V	2	7	
	 Voltage per phase on delta connected primary winding = 11000V Voltage per phase on star connected secondary winding = 415/1.732 = 239.6V (i) N₁ = Number of turns on primary per phase = voltage per phase/emf per turn = 11000/11.1 = 991 	1 1		
	 N₂ = Number of turns on secondary per phase = voltage per phase/emf per turn = 21.6 = 22 (iii) Full load HV and LV phase currents Output per phase = 6kVA/3 = 2kVA 	1		
	HV phase current = $2000/11000 = 0.182A$ LV phase current = $2000/239.6 = 8.35A$	1 1		
VI	K = V2/V1 = 220/2200 = 0.1 $R01 = R1 + (R2/K^{2}) = 1.7\Omega$ $X01 = X1 + (X2/K^{2}) = 6.2 \Omega$ $R02 = R2 + (K^{2} \times R1) = 0.017 \Omega$ $X02 = X2 + (K^{2} \times X1) = 0.062 \Omega$	1 1.5 1.5 1.5 1.5	7	
VII	The connection diagram for open circuit test on transformer is shown in the figure.		7	
	Image: Window	Fig- 3 Expl anat ion- 4		
	The voltage at rated frequency is applied to that LV side. The ammeter reading gives the no load current I_e . As the transformer is open circuited, there is no output, hence the input power here			

				1
	consists of core losses in transformer and copper loss in transformer during no load condition. But the no-load current in the transformer is quite small compared to the full load current. So the copper loss can be neglected due to the no-load current. Hence the wattmeter reading as equal to the core losses in the transformer. Let wattmeter reading is Po. $P_o = \frac{V_1^2}{R_m}$			
	Where, Rm is shunt branch resistance of transformer. If, Zm is shunt branch impedance of transformer			
	$Z_m = \frac{V_1}{I_e}$			
VIII				
	Core loss = 430 W			
	$\therefore \text{ Total loss on full load} = 955 \text{ W} = 0.955 \text{ kW}$	1		
	Efficiency at full-load = $\{(50 \times 0.7)/[(50 \times 0.7)+0.955)\}\times 100 =$	2	7	
	97.3% Copper loss on half load = $525 \times (0.5)^2 = 131$ W	1		
	:. Total loss on half load = $430 + 131 = 561$ W = 0.561 kW	1		
	Efficiency at half-load = $\{(25 \times 0.7)/[(25 \times 0.7)+0.561)\}\times 100 = 96.9\%$	2		
IX				
	It is a transformer with one winding only, part of this being	Fig- 3 Expl anat ion- 4	7	
	common to both primary and secondary.But its theory and			
	· ·			

operation are similar to those of a two-winding transformer. Because of one winding, it uses less copper and hence is cheaper. It is used where transformation ratio differs little from unity.As shown in Fig, AB is primary winding having N1 turns and BC is secondary winding having N2 turns. Neglecting iron losses and no-load current.

$$\frac{V_2}{V_1} = \frac{N_2}{N_1} = \frac{I_1}{I_2} = K$$

The current in section CB is vector difference of I2 and I1. But as the two currents are practically in phase opposition, the resultant current is (I2 - I1) where I2 is greater than I1. As compared to an ordinary 2-winding transformer of same output, an auto-transformer has higher efficiency but smaller size. Moreover, its voltage regulation is also superior.

The following cooling types are in common use :

X

(a) oil-filled self-cooled (b) oil-filled water-cooled (c) air-blast type

Small and medium size distribution transformers—so called because of their use on distribution systems as distinguished from line transmission—are of **type (a)**. The assembled windings and cores of such transformers are mounted in a welded, oil-tight steel tank provided with steel cover. After putting the core at its proper place, the tank is filled with purified, high quality insulating oil. The oil serves to convey the heat from the core and the windings to the case from where it is radiated out to the surroundings.

Construction of very large self-cooled transformers is expensive, a more economical form of construction for such large transformers is provided in the **oil-immersed**, **water-cooled type**. The windings and the core are immersed in the oil, but there is mounted near the surface of oil, a cooling coil through which cold water is kept circulating. The heat is carried away by this water. The large transformers such as those used with high-voltage transmission lines, are constructed in this manner. Oil-filled transformers are built for outdoor duty and as these require no housing other than their own, a great saving is thereby effected. These transformers require only periodic inspection. For voltages below 25,000 V, transformers can be built for cooling

by means of an **air-blast**. The transformer is not immersed in oil,

1

2

2

2

7

	but is housed in a thin sheet-metal box open at both ends through which air is blown from the bottom to the top by means of a fan or blower.			
XI	A 3 phase induction motor has two main parts (i) stator and (ii) rotor. The rotor is separated from the stator by a small air-gap which ranges from 0.4 mm to 4 mm, depending on the power of the motor.	1		
	It consists of a steel frame which encloses a hollow, cylindrical core made up of thin laminations of silicon steel to reduce hysteresis and eddy current losses. A number of evenly spaced slots are provided on the inner periphery of the laminations. The insulated connected to form a balanced 3-phase star or delta connected the circuit. The 3-phase stator winding is wound for a definite number of poles as per requirement of speed.	1	7	
	 (2)Kotor: The rotor, mounted on a shaft, is a hollow laminated core having slots on its outer periphery. The winding placed in these slots (called rotor winding) may be one of the following two types: (i) Squirrel cage type (ii) Wound type (i) Squirrel cage rotor: It consists of a laminated cylindrical core having parallel slots on its outer periphery. One copper or 	1		
	aluminum bar is placed in each slot. All these bars are joined at each end by metal rings called end rings. This forms a permanently short circuited winding which is indestructible. The entire construction (bars and end rings) resembles a squirrel cage and hence the name. The rotor is not connected electrically to the supply but has current induced in it by transformer action from the stator. Those induction motors which employ squirrel cage rotor are called squirrel cage induction motors. Most of 3 phase induction motors use squirrel cage rotor as it has a remarkably simple and robust construction enabling it to operate in the most adverse circumstances. However, it suffers from the disadvantage of a low starting torque. It is because the rotor bars are permanently short-circuited and it is not possible to add any external resistance to the rotor circuit to have a large starting torque.	2		
	(ii) Wound rotor: It consists of a laminated cylindrical core and carries a 3-phase winding, similar to the one on the stator. The	2		

	rotor winding is uniformly distributed in the slots and is usually star-connected. The open ends of the rotor winding are brought out and joined to three insulated slip rings mounted on the rotor shaft with one brush resting on each slip ring. The three brushes are connected to a 3-phase star-connected rheostat. At starting, the		
	external resistances are included in the rotor circuit to give a large starting torque. These resistances are gradually reduced to zero as the motor runs up to speed. The external resistances are used during starting period only. When the motor attains normal speed, the three brushes are short-circuited so that the wound rotor runs like a squirrel cage rotor.		
XII	P = 4, f = 50Hz Ns = 1500rpm Rotor speed at S = 5% = 0.05 Nr = Ns × (1-S) = 1425rpm fr = S × f = 1Hz	2 2 3	7
XIII	In the blocked rotor test, the applied voltage on the stator terminals should be low otherwise normal voltage could damage the winding of the stator. In block rotor test, the low voltage is applied so that the rotor does not rotate and its speed becomes zero and full load current passes through the stator winding. The slip is unity related to zero speed of rotor hence the load resistance becomes zero. Slowly increase the voltage in the stator winding so that current reaches to its rated value. At this point, note down the readings of the voltmeter, wattmeter and ammeter to know the values of voltage, power and current. The test can be repeated at different stator voltages for the accurate value.	Fig- 3 Expl anat ion- 4	7

XIV	 Changing Applied Voltage This method, even though it is the easiest, is rarely used. The reasons are (a) for a small change in speed, there must be a large 		7	
	 variation in voltage. (b) This large change in voltage will result in large change in flux density 2.Changing Applied Frequency The synchronous speed of the induction motor is given by Ns = 120f/P. So from this relation, it is evident that the synchronous speed and thus the speed of the induction motor can be varied by the supply frequency. 3.Rotor resistance control By varying the rotor resistance, slip can be controlled and thereby speed can be controlled. 4.V/f control: The voltage and frequency are varied in proportion so that the flux density remains constant.	1(for voltage control) +2(for frequen cy control) +2(for rotor resistan ce control) +2(V/f control)		