Model Question Paper- I

ELECTRICAL INSTALLATION DESIGN AND ESTIMATION

Time : 3 Hours
Max.Marks : 75
PART A
I. Answer any 5 questions. Each question carries $\mathbf{3}$ marks
($5 \times 3=15$ Marks)

1	Draw the graphical symbols of the followings: a) Lamp b) Single pole switch \quad co 5A Socket outlet	M 1.02	R
2	Compare open and concealed conduit wiring systems and list any three differences between them?	M 1.01	U
3	Define the following with respect to illumination a) Space Height ratio b) Depreciation Factor	M 2.02	R
4	Illustrate direct and indirect lighting schemes	M 2.01	U
5	List any three purposes of earthing?	M 3.01	R
6	Summarize the necessity of a starter for a motor?	M 3.02	U
7	List any three points to be taken into consideration while erecting overhead line?	M 4.01	R

PART B

Answer ONE question from each set. Each question carries 15 marks
($4 \times 15=60 \mathrm{Marks}$)

	candela and 250 candela are mounted at 8 and 10 m , respectively. The horizontal distance between the lamp posts is 40 m , calculate the illumination in the middle of the posts		
	State and prove inverse square law?	M2.01	U
	OR		
$\begin{array}{cc}\mathbf{V} & \\ \\ \text { a } \\ \\ \\ \text { b } \\ \\ \\ \text { c } \\ \\ \end{array}$	A small assembly shop 15 m long, 9 m wide, and 3 m up to trusses is to be illuminated to a level of 200 lux. The coefficient of utilisation is 0.75 and maintenance factor is 0.8 . Calculate the number of 40 W Fluorescent lamps required to illuminate the whole area if the lumen output of the lamp selected is 3000 lumens b Calculate the no of lamps fitted along length wise and breadth wise and draw the layout of light fittings. Take a space height ratio as 1.5 and lamp mounting height as 2 m c Determine the number of sub circuits required for electrification	M2.03	A
VI	It is proposed to install a power connection of 3 phase 5 HP	M3.03	A

| | induction motor for an agriculture tube-well in the room of size 3 m
 x 3m x 3m high. The motor is one metre away from two nearest
 walls. Prepare the estimate in the following order. | |
| :--- | :--- | :--- | :--- |
| a | Develop installation plan showing location of Main Board
 and motor etc. Also mark the path of wiring by a thick line. | |
| (3) | | |

	i.Size of conductor : ACSR $6 / 1 \times 2,59 \mathrm{~mm}$ ii.Tubular pole or supports of 11 metres length. iii.Size of earth wire: G.S. (Galvanized steel) 8 SWG. iv.Average span : 100 m v. No. of earthing sets to be installed : 3 Nos		
a	Construct the single line diagram of the line		

BLUE PRINT

Mark Distribution

Mod ule	$\mathrm{Hr} /$ Mo dul e	$\begin{gathered} (\mathbf{h i} / \\ \left.\sum_{*} \mathbf{H i}\right) \\ * \mathbf{1 4 1} \end{gathered}$	TYPE OF QUESTIONS					
			PART A		PART B		TOTAL	
			No of Questions	Marks	No of Questions	Marks	No of Questions	Marks
I	15		2		2		4	
		36.47		6		30		36
II	15		2		2		4	
		36.47		6		30		36
III	14		2		2		4	
		34.03		6		30		36
IV	14		1		2		3	
		34.03		3		30		33
Tota I	58		7		8		15	
		141		21		120		141

Cognitive Level Wise Question Analysis:

Mark Distribution

Cogn itive Level	$\begin{array}{\|l\|} \hline \% \\ \text { Mar } \\ \text { ks } \end{array}$	$\begin{gathered} \text { Mar } \\ \text { ks } \end{gathered}$	TYPE OF QUESTIONS					
			PART A		PART B		TOTAL	
			No of Questions	Marks	No of Questions	Marks	No of Question s	Marks
R	30		4		0		4	
		42.3		12		0		12
U	50		3		2		5	
		70.5		9		30		39
A	20		0		6		6	
		28.2		0		90		90
Tota\mathbf{l}	100		7		8		15	
		141		21		120		141

Question Wise Analysis:

Q.No	Module Outcome	Cognitive Level	Marks	Time (minutes)
I.1	M1.02	R	3	7
I.2	M1.01	U	3	7
I.3	M2.02	R	3	7
I.4	M2.01	U	3	7
I.5	M3.01	R	3	7
I.6	M3.02	U	3	7
I.7	M4.01	R	3	7
II.	M1.01	U	15	36
III.	M1.02	A	15	40
IV.a	M2.01	A	8	23
IV.b	M2.01	U	7	10
V.	M2.03	A	15	40
VI.	M3.03	A	15	35
VII.	M3.04	A	15	35
VIII.	M4.02	A	15	35
IX.	M4.04	A	15	35
	Total		141	338

Model Question Paper- II

ELECTRICAL INSTALLATION DESIGN AND ESTIMATION

Time : 3 Hours
Max.Marks : 75
PART A
I.Answer any 5 questions. Each question carries 3 marks
($5 \times 3=15$ Marks)

1	List out any six internal wiring rules?	M 1.01	R
2	List the selection criteria of cables?	M 1.02	R
3	Define illumination and mention its unit?	M 2.02	R
4	State laws of illumination	M 2.02	U
5	List any six materials and their specifications for standard plate earthing?	M 3.01	R
6	Calculate the current drawn by a 10 HP motor, assuming a supply voltage of $415 \mathrm{~V}, \mathrm{pf}=0.8$ and the efficiency of the load is $80 \% ?$	M 3.03	A
7	List out any six components of 11 KV pole mounted substation.	M 4.04	R

PART B

Answer ONE question from each set. Each question carries 15 marks ($4 \times 15=60$ Marks)

BLUE PRINT

Mark Distribution

Mod ule	$\begin{gathered} \mathrm{Hr} / \\ \mathrm{Mo} \\ \text { dul } \\ \text { e } \end{gathered}$	$\begin{gathered} (\mathbf{h i} / / \\ \left.\sum \mathbf{H i}\right) \\ \mathbf{1 4 1} \end{gathered}$	TYPE OF QUESTIONS					
			PART A		PART B		TOTAL	
			No of Questions	Marks	No of Questions	Marks	No of Question s	Marks
I	15		2		2		4	
		36.47		6		30		36
II	15		2		2		4	
		36.47		6		30		36
III	14		2		2		4	
		34.03		6		30		36
IV	14		1		2		3	
		34.03		3		30		33
Tota1	58		7		8		15	
		141		21		120		141

Cognitive Level Wise Question Analysis:

Mark Distribution

Cogn itive Level	$\begin{gathered} \text { \% } \\ \text { Mar } \\ \text { ks } \end{gathered}$	$\underset{\text { Mar }}{\text { Mar }}$	TYPE OF QUESTIONS					
			PART A		PART B		TOTAL	
			No of Questions	Marks	No of Questions	Marks	No of Question s	Marks
R	30		5		0		5	
		42.3		15		0		15
U	50		1		2		3	
		70.5		3		30		33
A	20		1		6		7	
		28.2		3		90		93
Tota1	100		7		8		15	
		141		21		120		141

Question Wise Analysis:

Q.No	Module Outcome	Cognitive Level	Marks	Time (minutes)
I.1	M1.01	R	3	7
I.2	M1.02	R	3	7
I.3	M2.02	R	3	7
I.4	M2.02	U	3	7
I.5	M3.01	R	3	7
I.6	M3.03	A	3	7
I.7	M4.04	R	3	7
II.	M1.01	U	15	36
III.	M1.02	A	15	36
IV.	M2.03	A	15	36
V.	M2.03	A	15	36
VI.	M3.01	A	15	36
VII.	M3.02	A	15	36
VIII.	M4.02	A	15	26
IX.	M4.04	A	15	36
	Total		141	338

Scoring Indicators
 Model Question Paper- I
 ELECTRICAL INSTALLATION DESIGN AND ESTIMATION

$\begin{gathered} \mathbf{Q} \\ \text { No } \end{gathered}$	Scoring Indicators	Split score	$\begin{gathered} \text { Sub } \\ \text { Tota } \\ \text { l } \end{gathered}$	Tota 1 Scor e
	PART A			
I. 1	Lamp or Lamp outlet Single pole switch Socket outlet 6 or 5 Amperes	3x1	3	21
I. 2	Concealed conduit Wiring System 1. The surface looks neat and clean. 2. This wiring is done inside the floors/walls. 3. There is no risk of mechanical injury. Open conduit Wiring System 1. Open wiring system does not give good look 2. It is a wiring method using cleats, knobs and flexible tubing 3. There is a risk of mechanical injury	6x0.5	3	
I. 3	Space to Height ratio It is defined as the ratio of the horizontal distance between the lamps to the mounting height of the lamp above working plane $\text { Space Height Ratio }=\frac{\text { Space between Lamps }}{\text { Mounting Height Above Working Plane }}$	2x1.5	3	

I. 5	a. To avoid electric shock to human body b. To avoid risk of fire due to earth leakage current through unwanted path c. To ensure that no current carrying conductor rises to a potential with respect to earth than its designed insulation	3x1	3	
I. 6	At starting $\mathrm{N}=0 ; \mathrm{Eb}=\Phi \mathrm{NPZ} / 60 \mathrm{~A}=0$ - Armature current $\mathrm{Ia}=(\mathrm{V}-\mathrm{Eb}) / \mathrm{Ra}=\mathrm{V} / \mathrm{Ra}$; Very high - Due to internal resistance drop of power system the terminal voltage decreases ($\mathrm{V}=\mathrm{Vs}$ - IRs) - This causes voltage dip for other loads - This situation persists until the speed of motor attains the rated speed	3x1	3	
I. 7	a. The voltage at tail end of the line should be within the prescribed limits b. It should be in a position to conduct the desired load efficiently c. The clearance of the conductor from ground and adjoining building should be as per IE rules	3x1	3	
	PART B			
II.a.	CLEAT WIRING Cleat wiring is one of the cheapest wiring systems considering the initial cost and labor and it is most suitable for a temporary basis. This wiring system is quickly installed, easily inspected and altered. In this type of wiring VIR or PVC insulated wire is used as a conductor. This wiring system, All the cables are in open-air therefore fault is very easily found and replaced it very quickly and It is easy to fault detection	$\begin{gathered} 2+ \\ 2.5+ \\ 1.5+ \\ 1.5 \end{gathered}$	7.5	15

Cleat wiring is recommended only for temporary installment. The cleat is made in pairs having a bottom and a top half. So, in the bottom, half is grooved to receive the wire and the top half is for cable grip. Initially, the bottom and top cleat are fixed on the wall loosely according to the layout. Then the cable is drawn, tensioned and the cleat is tightened by the screw. The cleat is of the basic three types, having one, two or three grooves, so as to receive one, two or maximum three wires.
(2 marks)

(2.5 marks)

Advantages of cleat wiring:

- It is easy to fault detection.
- It is easy to repair.
- This is the temporary wiring system.
- It is the cheapest for internal wiring.

(1.5 marks)

Disadvantages of cleat wiring:

- It has a bad appearance.
- It is not looking good.
- This wiring system is not safe and durable.
- It is a chance to shock or fire.
- It is not a sustainable wiring system.
- It is used only low-temperature places.
(1.5 marks)

III. ${ }^{\text {a }}$	$\begin{aligned} d_{1} & =\sqrt{8^{2}+20^{2}} \\ & =21.54 . \end{aligned}$ The illumination of point ' P ' due to source ' S 1 ' $=0.159$ lux and $d_{2}=\sqrt{10^{2}+20^{2}}=22.36$ $\cos \theta_{2}=\frac{h_{2}}{d_{2}}=\frac{10}{22.36}=0.447$ $\begin{align*} E_{2} & =\frac{I_{2}}{d_{2}^{2}} \times \cos \theta_{2} \\ & =\frac{250}{(22.36)^{2}} \times 0.447=0.2235 \text { lux. } \tag{5marks} \end{align*}$ The illumination at the point ' P ' due to the source ' $S 2$ ' \therefore The total illumination at P^{\prime} due to both the sources $S 1$ $\operatorname{and} S 2$ $=E 1+E 2=0.159+0.2235=0.3825 \text { lux. }$	5+3	8	15
III.b	It states that the illumination of a surface is inversely proportional to the square of the distance between the surface and the light source.	$2+5$	7	

IV.a		3x1	3	15

	$\begin{gather*} L_{1}=\frac{\text { Length }}{N_{L}}=\frac{15}{5}=3 \\ L_{2}=\frac{L_{1}}{2}=\frac{3}{2}=1.5 \\ W_{1}=\frac{\text { Width }}{N_{W}}=\frac{9}{3}=3 \\ W_{2}=\frac{W_{1}}{2}=\frac{3}{2}=1.5 \tag{5marks} \end{gather*}$			
IV.c.	No of sub circuits No of Lamps $=\mathrm{N}=15$ Watt rating of $1 \mathrm{lamp}=\mathrm{W}=40 \mathrm{w}$ Total wattage $=\mathrm{N} * \mathrm{~W}=15 \times 40=600 \mathrm{w}$ As per IE rules Load on Each sub circuit is restricted to 800 W 0r 10 outlets No of Subcircuits $\begin{gathered} =\frac{\text { Total Watts }}{800} \text { or } \frac{\text { Total points }}{10} \\ =\frac{600}{800} \text { or } \frac{15}{10} \begin{aligned} & \\ &=0.75 \text { or } 1.5 \\ &=1 \text { or } 2 \end{aligned} \\ =2(\text { select largest }) \end{gathered}$	3x1	3	
V.a.		3x1	3	15

VI.a	Installation Plan.	3x1	3	15
VI.b		5x1	5	
VI.c	Assumptions: 1. Height of Main Board is 1.5 m from floor 2. Two earth wires enclosed in their respective 15 mm dia GI pipe installed side by side for earthing the motor 3. The moto with pumping set is installed 0.25 m above floor on suitable foundation Total current $I=(5 * 735.5) /(\sqrt{ } 3 * 400 * 0.75 * 0.85)$	3+4	7	

VII.a		6x1	6	15
VII.b	Assumptions: 1. Height of ground floor is $=3.5 \mathrm{~m}$ 2. Service connections received at a height of 6 m from floor 3. Electrical load, 5 sub circuits (given) of 800 W each, with one 15 A socket. Total $=5 \mathrm{~kW}$ Total load current $=5000 / 230=21.7 \mathrm{~A}$ Total connected load $=21.7 * .6(60 \%$ diversity factor $)=$ 13A (approx) It is therefore suggested that a weather proof cable of size 1/ 3.55 mm , twin core, PVC insulated, 34 A (higher rating about 50\%)	3+6	9	

Scoring Indicators
 Model Question Paper- II
 ELECTRICAL INSTALLATION DESIGN AND ESTIMATION

$\begin{gathered} \mathbf{Q} \\ \text { No } \end{gathered}$	Scoring Indicators	Split score	Sub Tota I	Tota I Scor e
	PART A			
I. 1	a. Every installation is to be properly protected near the point of entry of supply cables by a two-pole linked main switch and a fuse unit. b. The conductor used is to be of such a size that it may carry load current safely. c. Separate conduit for light and power wiring. d. Every sub-circuit is to be connected to a distribution fuse board. e. Every line is to be protected by a fuse of suitable rating as per requirements. f. A switch board is to be installed so that its bottom lies 1.25 metres above the floor. g. All plugs and socket-outlets are to be of 3-pin type, the appropriate pin of socket being connected permanently to the earthing system	6x0.5	3	21
I. 2	a. voltage rating b. Current rating c. Conductivity, d. Weight e. Temperature f. Required flexibility g. Tensile strength h. Type of insulation	6x0.5	3	
I. 3	It is the luminous flux received by the surface per unit area. It is represented by E . The unit of illumination is lux. Illumination $\mathrm{E}=$ flux / Area	3x1	3	
I. 4	Inverse Square Law This law assumes that the illumination(E) received on a surface from a light source is inversely proportional to the square of it's distance from the source, as long as the source	$\begin{aligned} & 2 \mathrm{x} \\ & \mathbf{1 . 5} \end{aligned}$	3	

	remains same $E=\frac{I}{r^{2}}$ Where $\begin{aligned} & \mathrm{E}=\text { illuminance }(\text { lux }) \\ & \mathrm{I}=\text { Luminous intensity }(\text { candela }) \\ & \mathrm{r}=\text { distance }(\text { metre }) \end{aligned}$ Lambert's Cosine Law This law states that illumination on a surface is proportional to the cosine of the angle between the normal to the surface and line of flux $E=\frac{I}{r^{2}} \operatorname{Cos} \theta$ Where $\begin{aligned} & \mathrm{E}=\text { illuminance }(\text { lux }) \\ & \mathrm{I}=\text { Luminous intensity }(\text { candela }) \\ & \mathrm{r}=\text { distance }(\text { metre }) \end{aligned}$ $\theta=$ angle between line of flux and the normal to the illuminated plane		
I. 5	a. G.I plate of size $\quad 600 \mathrm{~mm} \times 600 \mathrm{~mm} \times 83 \mathrm{~mm}$ b. G.I wire 8 SWG c. $\quad 12.7 \mathrm{~mm}$ G.I pipe 2 m d. 19.mm G I pipe $\quad 1.5$ Meters e. G.I nuts bloats check nuts, washers 6 sets f. $\quad 12.7 \mathrm{~mm}$ G.I bend $\quad 2$ Nos g. GI earth lugs 3Nos h. 300 mmx 300 mm Cast Iron frame with CI frame 1 set i. Funnel with wire mesh 1 set j. Charcoal 20 kg k. common salt $\quad 20 \mathrm{~kg}$ 1. cement concrete $1: 4: 8 \quad 0.1 \mathrm{~m}^{2}$	6x0.5	3

I. 6	Assuming a supply voltage of 415 V , p.f $=0.8$ and the efficiency of the load is 80%. Current $=(10 \times 735.5) \div(0.8 \times 0.8 \times 400 \times \sqrt{ } 3)=16.6$ Amps	3x1	3
I. 7	a. Pin type insulator b. AB switch c. Lightning Arrester d. Circuit Breaker e. Distribution Transformer f. Earthing g. DO Fuse h. Stay Wire i. MV cable j. LV cable	6x0.5	3

	PART B			
II.a	CONDUIT WIRING Conduit Wiring is the best system of wiring. There are two methods for laying conduits. In one method conduit is laid on the surface of the wall, ceiling etc. This is called surface wiring. The other method is to lay the conduit recessed in wall or ceiling, and this system is known as concealed wiring. Conduit may be rigid or flexible. Rigid conduit is used for general work, while flexible conduit is used for short runs. Various types of fittings are used for jointing and terminating conduit. Conduit and its accessories must be galvanized or enameled in order that these are weather proof and immune to rust. Presently PVC conduit wiring system is most popular. (2 marks) PVC conduit (2.5 marks) Advantages of Conduit Wiring - P.V.C conduits offers a highly resistant against corrosion. - It is a durable and very popular system. - It is a water proof wiring system. - It will not support combustion. (1.5 marks) Disadvantages of Conduit Wiring - Not suitable for temperature below 5 degree and above 60 degree Celsius - This is expensive compared to other wiring systems	$\begin{gathered} 2+ \\ 2.5+ \\ 1.5+ \\ 1.5 \end{gathered}$	7.5	15

	rewiring is required. (1.5 marks)			
III. a	Total floor area $=12 \times 8=96 \mathrm{~m}^{2}$ Total flux $=80 \times 96=7680$ lumen $(2$ marks $)$ Total flux required on working plane $=$ total flux/(CU x MF) $=7680 /(0.5 \times 0.8)=19200$ lumen $(2$ marks $)$ Total wattage $=$ Flux $/ \eta=19200 / 40=480 \mathrm{w}$ $(2$ marks $)$ No. of lamps required $=480 / 40=12$ $(2$ marks $)$	$\begin{gathered} 2+2+ \\ 2+2 \end{gathered}$	8	15
III.b	Direct fitting: - 90-100\% directed towards the working plane, 10% goes to the other direction. The height of the lamp is two thirds of the lamp spacing. Reflectors can be used. This type may produce hard shadows. Semi-direct fitting: - $60-90 \%$ on the working plane, $10-40 \%$ goes the other direction. Translucent reflectors can be used. This type also produces shadows. General fitting: - $40-60 \%$ on the working plane, $60-40 \%$ goes the other direction. Translucent reflectors of different thickness can be used. This fitting produces almost uniform light. Semi-indirect fitting: - $10-40 \%$ light on the working plane, remaining light goes to the upper hemisphere. Light on the working plane by the reflectivity of the ceiling and walls. This produces faint shadows. Indirect fitting: - 10% of the light on the working plane due the reflectivity of the walls and ceiling. This will not produce any shadows or any glare. These are used for clubs and restaurants.	7x1	7	
IV.a	Number of sub circuits : Total watts $=520 \mathrm{~W}$, so we need only one sub circuit.	2x1	2	15
IV.b	Size and length of the cable : Current through sub circuit $=$ power $/$ voltage $=520 / 230$ $=2.26 \mathrm{~A}$ (2 marks) Size of the cable required is $1 \mathrm{~mm}^{2}$ copper. Length of conduit $=20 \mathrm{~m}$ Cable length $=$ Length of conduit $\mathrm{X} 3=60 \mathrm{~m} \quad$ (3 marks)	2+3	5	

V.a		3+2	5	15
V.b	Disposition of Lamps:	4+3	7	

$\begin{gathered} \begin{array}{c} \text { Space height ratio }=1.5 \\ \text { mounting height }=2 \mathrm{~m} \end{array} \\ \text { Space }=1.5 \\ \text { Mounting Height } \\ \text { Space }=1.5 * \text { mounting height } \\ =15 * 2=3 \mathrm{~m} \\ \text { No of lamps fitted along width } \\ N_{W}=\frac{\text { width }}{\text { space }}=\frac{13}{3}=4.3=4 \\ \text { No of lamps fitted along Length } \\ N_{L}=\frac{\text { Total lamps }}{N_{w}} \\ =\frac{41}{4}=10.25=10 \end{gathered}$ arrange 40 lamps uniformly and 1 lamp separately $\begin{gather*} L_{1}=\frac{\text { Length }}{N_{L .}}=\frac{30}{10}=3 \\ L_{2}=\frac{L_{1}}{2}=\frac{3}{2}=1.5 \\ W_{1}=\frac{\text { Width }}{N_{W}}=\frac{13}{4}=3.25 \\ W_{2}=\frac{W_{1}}{2}=\frac{3.25}{2}=1.625 \tag{4marks} \end{gather*}$			

V.c	No of sub circuits: No of Lamps $=N=41$ Watt rating of 1 lamp $=W=80 \mathrm{~W}$ Total wattage $=N^{*} W=41 \times 80=3280 \mathrm{~W}$ As per IE rules Load on Each sub circuit is restricted to 800 W 0r 10 outlets No of Subcircuits $=$ $\frac{\text { Total Watts }}{800}$ or $\frac{\text { Total points }}{10}$ $=\frac{3280}{800} \quad$ or $\frac{41}{10}$ $\begin{gathered} =4.1 \text { or } 4.1 \\ \quad=5 \end{gathered}$	3x1	3	
VI.	(8 marks)	8+7	15	15

$\begin{gathered} \text { VII. } \\ \mathbf{a} \end{gathered}$		3x1	3	15
VII. b		5x1	5	
$\begin{gathered} \text { VII. } \\ \mathbf{c} \end{gathered}$		7x1	7	

IX.a		6x1	6	15
IX.b	Size of LT unit box and cable for each sub-circuit: The maximum demand is 800 kVA which has to be distributed in four circuits. So each circuit is assumed to be rated 200 kVA . The maximum current in LT sub-circuit $=(200 * 1000) /(\sqrt{ } 3 * 400)=288 \mathrm{~A}$ Therefore 300A unit box, three phase with neutral is selected Cable selected for unit box is 4 core 185 mm (1 mark) Size of HT cable: The maximum current in HT sub-circuit $=\left(1000^{*} 1000\right) /(\sqrt{ } 3 * 11000)=52.4 \mathrm{~A}$	$\begin{gathered} 1+1+ \\ 1+6 \end{gathered}$	9	

	$(6$ marks $)$			

