Model Question Paper I

POWER ELECTRONICS DEVICES AND CIRCUITS

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark. (9*1=9 Marks)

	()	1 $)$ $Mu(hs)$	
1	Define Latching current of SCR	M1.02	R
2	SCR is alayerjunctionterminal device.	M1.02	R
3	Draw the symbol of UJT.	M1.01	R
4	Define Firing angle of SCR	M2.01	R
5	The single phase semi- controlled rectifiers havenumber of SCRs	M2.03	R
6	Define Chopper.	M3.01	R
7	Define Cycloconverters.	M3.04	R
8	Define Pulse Width Modulated inverter.	M4.02	R
9	Define a Voltage Source Inverter (VSI).	M4.01	R

1	Define Commutation of SCR and also list out different commutation techniques for SCR.	M1.03	R
2	Draw a Snubber Circuit and state its need.	M1.03	U
3	List out any six applications of UJT.	M1.01	R
4	Illustrate the operation of a half wave controlled rectifier with R load.	M2.01	U
5	List different roles of a freewheeling diode in a controlled rectifier circuit.	M2.01	R
6	A step up chopper has input voltage of 220V and output voltage of 660V. If the total time period of thyristor-chopper is 300 μ s, then compute its duty cycle (α) and turn ON time (T _{ON})	M3.01	А
7	List any three comparisons between buck and boost converters.	M3.03	R
8	Summarize the working of a static Servo Voltage stabilizer with block diagram.	M4.03	U
9	List any six requirements of a practical inverter.	M4.01	R
10	Explain SMPS with the help of a block diagram.	M4.03	U

II. Answer any **eight** questions from the following, each question carries 3 marks. (8*3=24 marks)

PART C

Answer *ALL* questions. Each question carries 7 marks.

III	Explain any two turn on methods of SCR	M1.03	U
	OR		
IV	Illustrate the working of TRIAC with a neat diagram	M1.01	U
V	Explain V-I characteristics of SCR.	M1.02	U
	OR		
VI	Illustrate the working of N channel enhancement type MOSFET.	M1.01	U
VII	Explain the single phase full wave bridge controlled rectifier with RL load and freewheeling diode.	M2.02	U
	OR		
VIII	Explain single phase half wave controlled rectifiers with RL load and freewheeling diode.	M2.01	U
IX	Summarize the different control methods of a DC Chopper	M3.01	U
	OR		
	UK		
X	Explain the working of a DC chopper with a neat circuit diagram and waveforms. Also list out different types of DC chopper.	M3.02	U

(6*7=42 Marks)

XI	Explain the working of a half bridge inverter with RL load and feedback diodes.	M4.02	U
	OR		
XII	Explain the different types of UPS with block diagram.	M4.03	U
XIII	Illustrate the working of a series inverter with a neat diagram.	M4.01	U
	OR		
XIV	Explain the 180° conduction mode of three phase bridge inverter with R load only.	M4.02	U

BLUE PRINT

					TYP	E OF	QUESTIC	DNS		
Module	Hr / Modu	(hi / ∑Hi)	PART A		PART B		PART C		TOTAL	
	le	* 123	No of Questi ons	Mark s	No of Question s	Mark s	No of Question s	Mark s	No of Question s	Mark s
Ι	16		3		3		4		10	
		33.93		3		9		28		40
II	14		2		2		2		6	
		29.69		2		6		14		22
III	12		2		2		2		6	
		25.45		2		6		14		22
IV	16		2		3		4		9	
		33.93		2		9		28		39
Total	58		9		10		12		31	
		123		9		30		84	+	123

Cognitive Level Wise Question Analysis

	TYPE OF QUESTIONS									
Cognitiv	% Mark s	Mark	PAR	ГА	PAR	ГВ	PAR	ГС	ТОТ	AL
e Level			S	No of Questio ns	Mark s	No of Questio ns	Mark s	No of Questio ns	Mark s	No of Questio ns
R	30		9		5		0		14	
	20	36.9		9		15		0		24
U	50		0		4		12		16	
		61.5		0		12		84		96
A	20		0		1		0		1	
		24.6		0		3		0		3
Total	100		9		10		12		31	
		123		9		30		84		123

Question Wise Analysis

Q.No	Module Outcome	Cognitive Level	Marks	Time
I.1	M1.02	R	1	2
I.2	M1.02	R	1	2
I.3	M1.01	R	1	2
I.4	M2.01	R	1	2
I.5	M2.03	R	1	2
I.6	M3.01	R	1	2
I.7	M3.04	R	1	2
I.8	M4.02	R	1	2
I.9	M4.01	R	1	2
II.1	M1.03	R	3	6
II.2	M1.03	U	3	7
II.3	M1.01	R	3	7
II.4	M2.01	U	3	8
II.5	M2.01	R	3	7
II.6	M3.01	A	3	8
II.7	M3.03	R	3	7
II.8	M4.03	U	3	8
II.9	M4.01	R	3	7
II.10	M4.03	U	3	8
III.	M1.03	U	7	17
IV.	M1.01	U	7	17
V	M1.02	U	7	17
VI	M1.01	U	7	17

VII	M2.02	U	7	17
VIII	M2.01	U	7	17
IX	M3.01	U	7	17
Х	M3.02	U	7	17
XI	M4.02	U	7	17
XII	M4.03	U	7	17
XIII	M4.01	U	7	17
XIV	M4.02	U	7	17
	Total	123	295	

Prepared By :	Scrutinised By :
Cathed	- sjud
	Ajmal M M ,
Chithra S R Lecturer in EEE	Lecturer in EEE
Govt. Polytechnic College Punalur	
	Govt polytechnic college Muttom

Model Question Paper II

POWER ELECTRONICS DEVICES AND CIRCUITS

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark. (9*1=9 marks)

1.	Define Holding current of SCR	M1.02	R
2.	List different types of MOSFET	M1.01	R
3.	Draw the symbol of TRIAC	M1.01	R
4.	Define phase controlled rectifiers.	M2.01	R
5.	Explain the effect of freewheeling diode on output voltage of phase controlled rectifier with inductive load	M2.01	U
6.	Name the circuit used to step up dc voltage	M 3.03	R
7.	List chopper control strategies	M3.01	R
8.	List the classifications of inverters.	M4.01	R
9.	List different types of SMPS	M4.03	R

PART B

II. Answer *any eight* questions from the following, each question carries 3 marks. (8*3=24 marks)

1	Label the terminals of GTO, LASCR, and SCS with symbol.	M1.01	R
2	List any six applications of power electronic devices.	M1.01	R
3	Illustrate gate triggering method of SCR.	M1.03	U
4	Draw the circuit diagram of a three phase controlled rectifier.	M2.04	R

5	Draw the circuit diagram and waveforms of single phase fully controlled centre tapped rectifier with R load	M2.02	R
6	A step down chopper has input voltage of 440V and output voltage of 220V. If the total time period of thyristor-chopper is $300\mu s$, then compute its duty cycle (D) and turn ON time (T _{ON})	M3.01	А
7	List the applications of chopper	M3.03	R
8	Compare CSI and VSI	M4.01	U
9	Explain sinusoidal PWM.	M4.02	U
10	List the advantages of electric drives	M4.04	R

PART C

Answer ALL questions. Each question carries 7 marks.

(6*7=42 marks)

III	Illustrate the construction and working principle of IGBT	M1.01	U
	OR		
IV	Illustrate the working of UJT with the help of equivalent circuits.	M1.01	U
V	Explain turn off process of SCR and summarize natural commutation and forced commutation	M1.03	U
	OR		
VI	Explain the working of DIAC	M1.01	U
VII	Explain single phase semi controlled rectifier with RL load	M2.03	U
	OR		
VIII	Explain Single phase Fully controlled rectifier with RL load	M2.02	U

IX	Illustrate the four quadrant operation of Class E chopper	M3.02	U
	OR		
X	Illustrate the working of a single phase step up cycloconverter.	M3.04	U
XI	Illustrate the working of a full bridge inverter with RL load and feedback diodes.	M4.02	U
	OR		
XII	Illustrate the working of line interactive UPS with the help of a block diagram	M4.03	U
XIII	Explain the working of Parallel inverter	M4.01	U
	OR		
XIV	Explain the block diagram of electric drive	M4.04	U

BLUE PRINT

	TYPE OF QUESTIONS						DNS				
Modul	Hr / Modu	(hi / ∑Hi)	PAR	ТА	PAR	ГВ	PAR	ГС	TOT	AL	
e	le		* 123	No of Questio ns	Mark s						
Ι	16		3		3		4		10		
		33.93		3		9		28		40	
II	14		2		2		2		6		
		29.69		2		6		14		22	
III	12		2		2		2		6		
		25.45		2		6		14		22	
IV	16		2		3		4		9		
		33.93		2		9		28		39	
Total	58		9		10		12		31		
		123		9		30		84		123	

Cognitive Level Wise Question Analysis

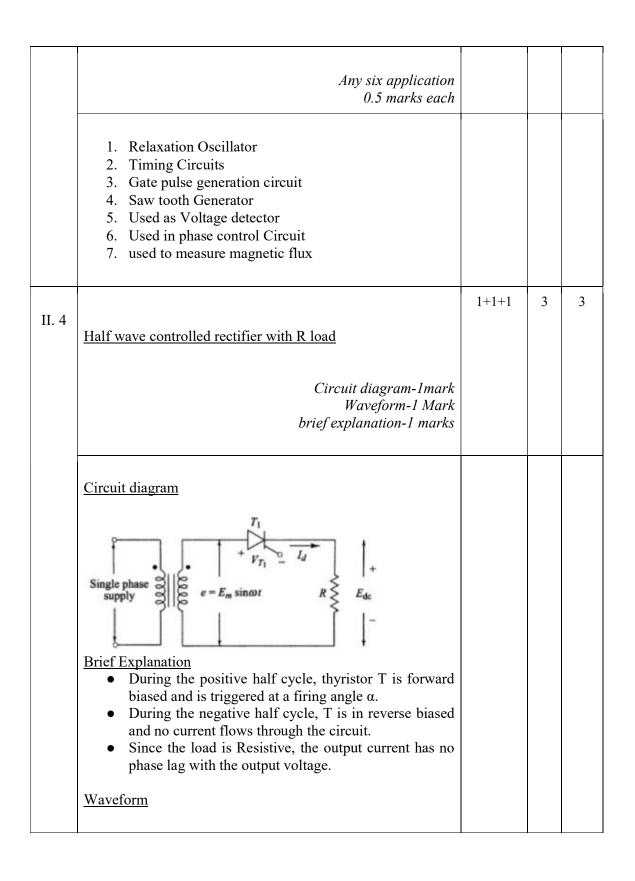
			TYPE OF QUESTIONS								
Cognitiv	% Mark	Mark	PAR	ТА	PAR	ГВ	PAR	ГС	ТОТ	AL	
e Level	S		S	No of Questi ons	Mark s	No of Questio ns	Mark s	No of Questio ns	Mark s	No of Questio ns	Mark s
R	30		8		6		0		14		
	50	36.9		8		18		0		26	
U	50		1		3		12		16		
		61.5		1		9		84		94	
A	20		0		1		0		1		
		24.6		0		3		0		3	
Total	100		9		10		12		31		
I otai		123		9		30		84		123	

Question Wise Analysis

Q.No	Module Outcome	Cognitive Level	Marks	Time
I.1	M1.02	R	1	2
I.2	M1.01	R	1	2
I.3	M1.01	R	1	2
I.4	M2.01	R	1	2
I.5	M2.01	U	1	2
I.6	M 3.03	R	1	2
I.7	M3.01	R	1	2
I.8	M4.01	R	1	2
I.9	M4.03	R	1	2
II.1	M1.01	R	3	7
II.2	M1.01	R	3	7
II.3	M1.03	U	3	8
II.4	M2.04	R	3	7
II.5	M2.02	R	3	8
II.6	M3.01	А	3	8
II.7	M3.03	R	3	7
II.8	M4.01	U	3	7
II.9	M4.02	U	3	7
II.10	M4.04	R	3	7
III.	M1.01	U	7	17
IV.	M1.01	U	7	17
V	M1.03	U	7	17
VI	M1.01	U	7	17

VII	M2.03	U	7	17
VIII	M2.02	U	7	17
IX	M3.02	U	7	17
X	M3.04	U	7	17
XI	M4.02	U	7	17
XII	M4.03	U	7	17
XIII	M4.01	U	7	17
XIV	M4.04	U	7	17
	Total		123	295

Prepared By :	Scrutinised By :
Vineeth V	Ajmal M M
Lecturer	Lecturer
Govt polytechnic college Kalamassery	Govt polytechnic college Muttom
Har	sjud

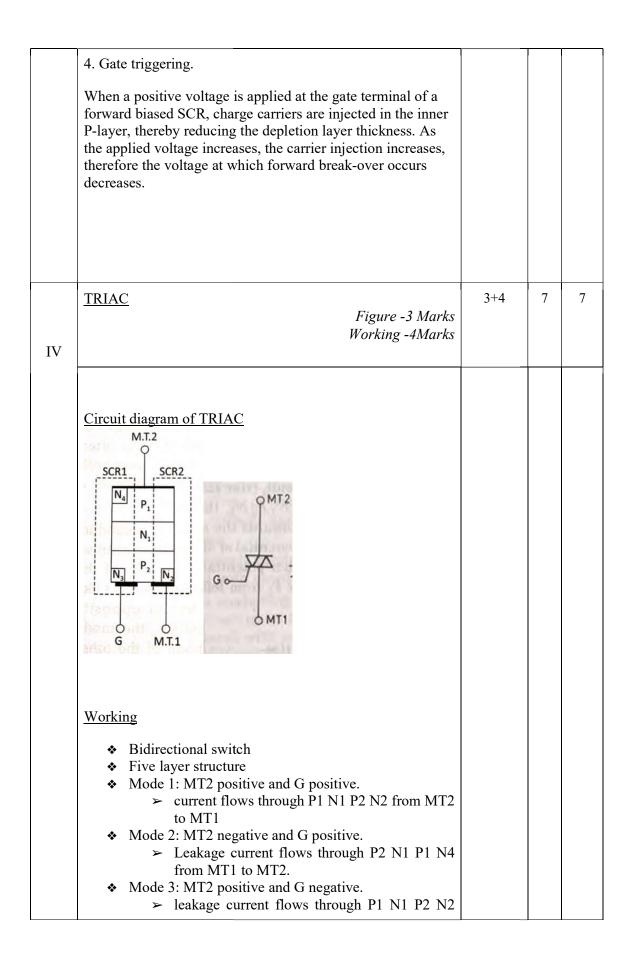

Scoring Indicators

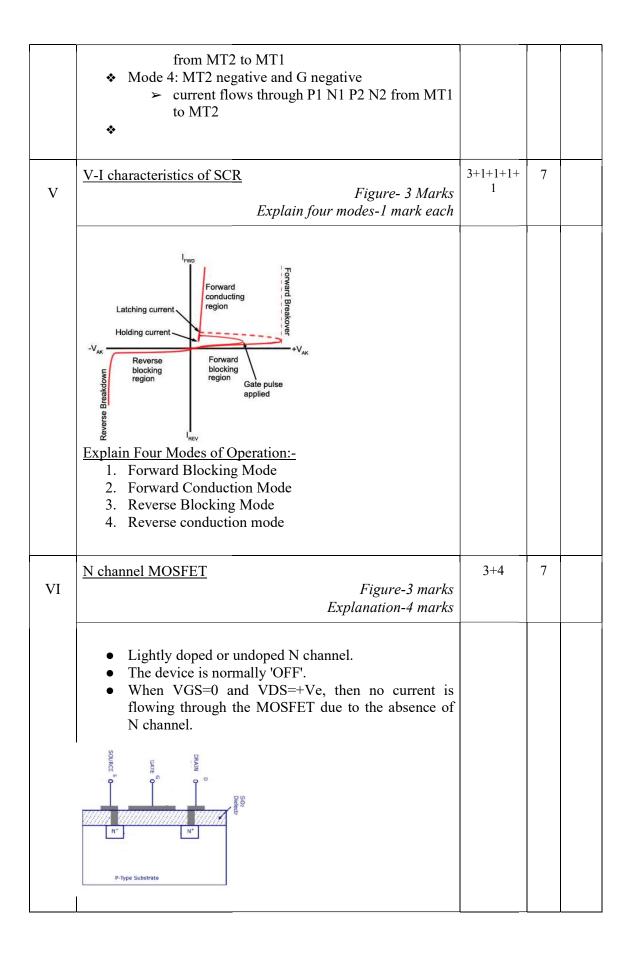
Model Question Paper I

POWER ELECTRONICS DEVICES AND CIRCUITS

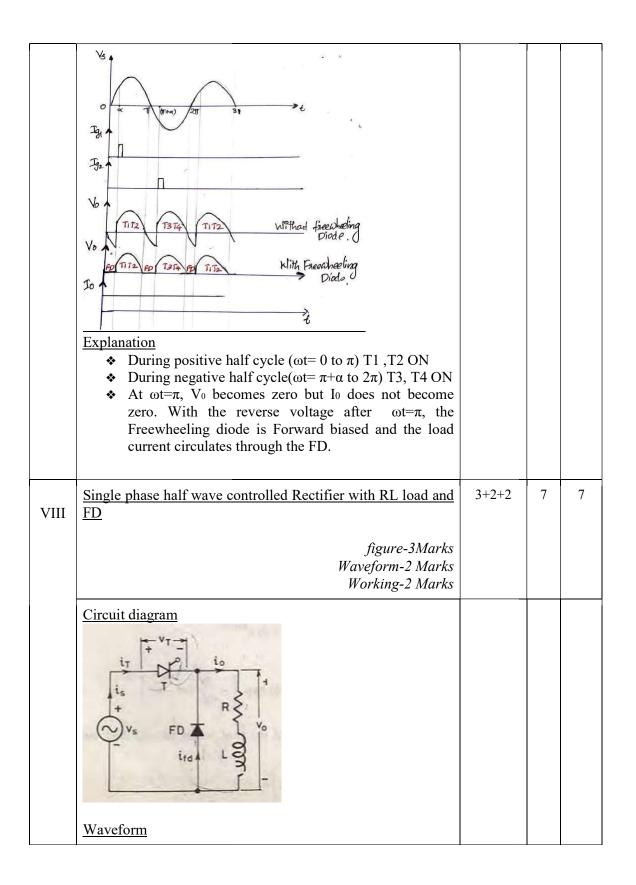
Q No	Scoring Indicators	Split score	Su b Tot al	Tota 1 Scor e
	PART A			
I. 1	Latching current can be defined as it is the least amount of anode current which is necessary to supply from the anode terminal to the cathode terminal to activate the SCR after detaching the gate terminal	1	1	1
I. 2	4 layer,3 junction, 3 terminal	1	1	1
I. 3		1	1	1
I. 4	The angle at which thyristor gate gets fired is called firing angle	1	1	1
I. 5	Two	1	1	1
I. 6	Chopper is a converter to convert fixed DC to Variable DC converter (simply DC to DC converter)	1	1	1
I. 7	Cycloconverts converts constant voltage, constant frequency AC waveform to another AC waveform at different frequencies.	1	1	1
I. 8	The output voltage of an inverter is controlled by varying the width of the gate pulses having constant amplitude, is called a pulse-width modulated inverter.	1	1	1
I. 9	An inverter which converts a voltage from a stiff DC voltage source is called Voltage source Inverter.	1	1	1
	PART B II. Answer any eight questions from the following, each questions	on carries 3	mark	s.
	Commutation of SCR	2+1	3	

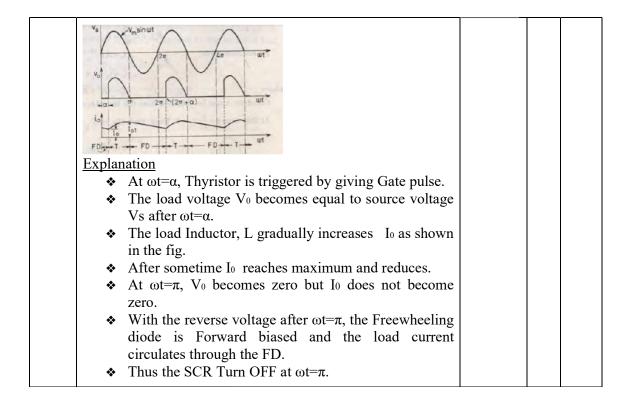
II. 1	Definition-2Marks List types-1 Mark			
	 ★ Turn OFF process of a Conducting SCR is called Commutation of SCR. ★ To turn OFF a conducting SCR, the following conditions must be satisfied. ➤ The anode or forward current of SCR must be reduced to zero or below the level of holding current and then, ➤ A sufficient reverse voltage must be applied across the SCR to regain its forward blocking state. <u>Types</u> Natural Commutation: - used To Turn OFF SCRs in AC circuits. Eg:- Rectifier Forced Commutation: - Used to Turn OFF SCRs in DC circuits eg. Inverter, Chopper etc. 			
II. 2	<u>Snubber Circuits</u> figure-2 mark need (any one)- 1 mark	2 + 1	3	
	 Rs Cs Discharge current LOAD dv/dt protection of a thyristor is achieved by a Snubber Circuit Snubber circuit consists of a series combination of resistance Rs and capacitance Cs in parallel with the thyristor 			
II. 3	Applications of UJT	0.5*6	3	3

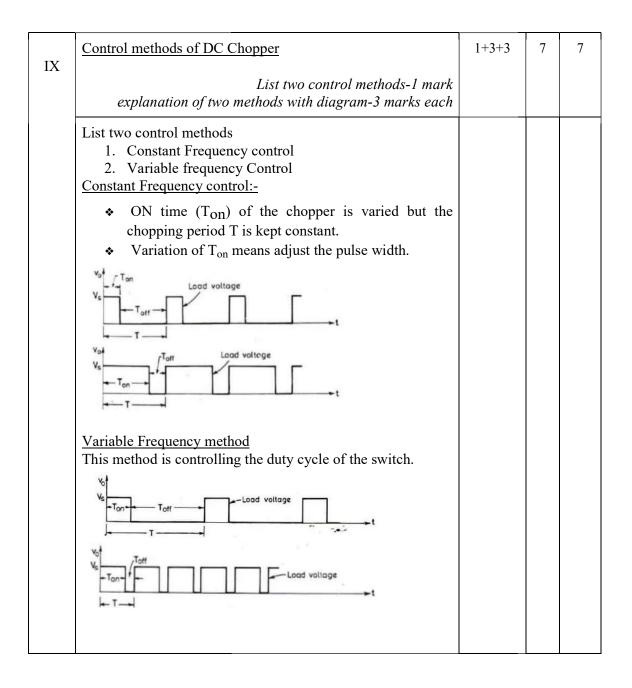


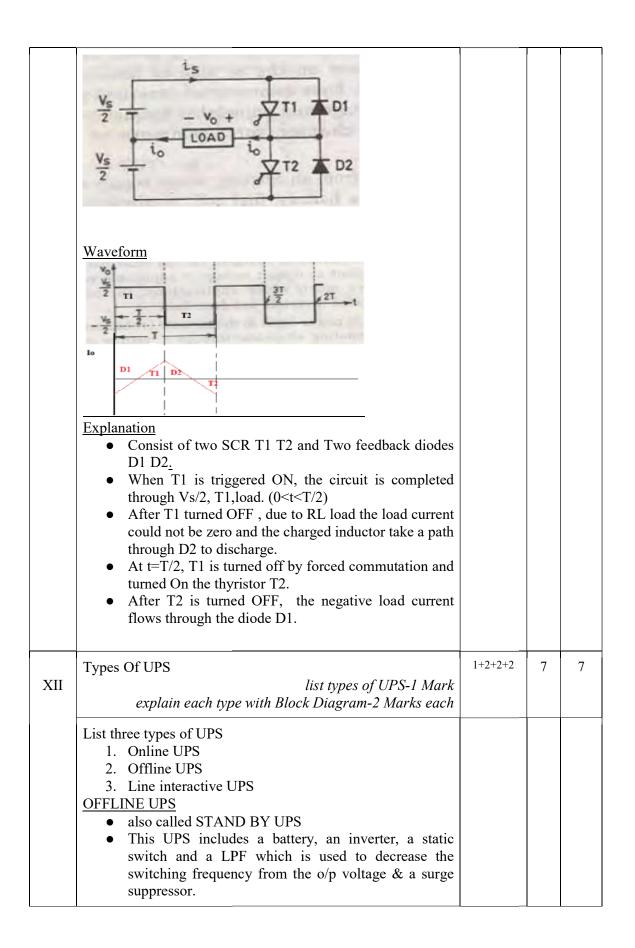

	Supply voltage 0 Firing pulses l_g Load voltage E_{dc} Load current l_{dc} Voltage V_T Voltage V_T			
II. 5	Roles of Freewheeling diode list any three roles 1 Marks each	1+1+1	3	
	 Load current become continuous and gets improved Input Power factor is improved. Load Performance is increased. 			
II. 6	duty cycle, $\alpha = \frac{2}{3}$,Duty cycle-1.5 marksON time, $T_{ON} = 200 \mu s$ On time-1.5 marks	1.5+1.5	3	3
	$\begin{split} V_{in} =& 220V, V_o =& 660V, T = 300 \mu s \\ V_O =& V_{in}/(1-\alpha) \\ \text{Solving } \alpha =& \frac{2}{3} \\ T_{ON} =& \alpha T \\ \text{Solving } T_{ON} =& 200 \mu s \end{split}$			
II. 7	Buck and Boost converter Any three comparisons 1 marks each	1+1+1	3	3

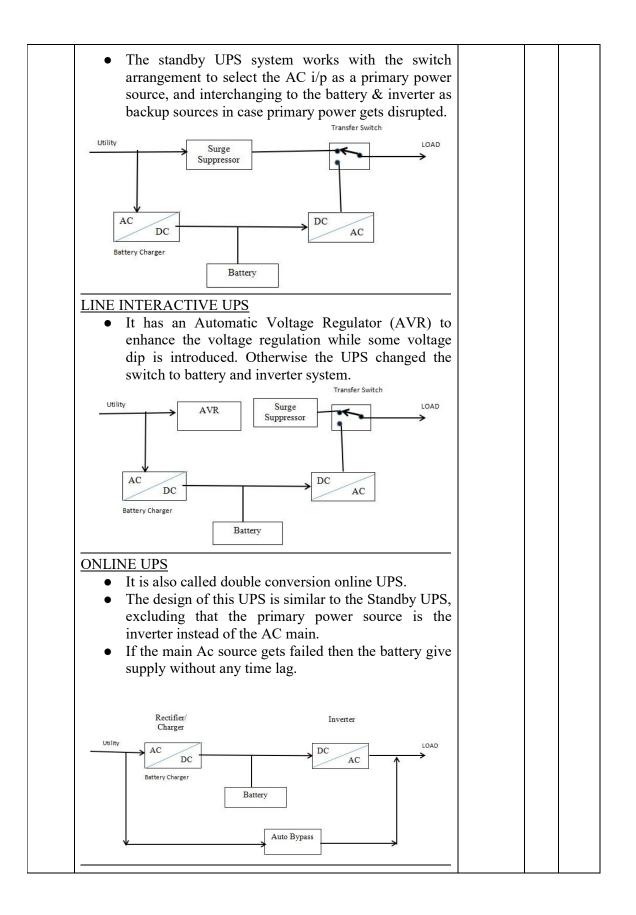
	SI No.	Buck converter	Boost Converter			
	1	It step down the input voltage level	It step up the input voltage level			
	2	The magnitude of output voltage is less than the magnitude of input voltage	The magnitude of output voltage is higher than the magnitude of input voltage			
	3	The input current is discontinuous in nature	the input current is continuous in nature			
	4	It provide low voltage and high current	It provide high voltage and low current			
	5	Not suited for PV cells	Suited for PV cells			
	6	they are used in self- regulating power supplies, advanced telecommunication and data communication systems	They are used in regulated power supplies, regenerative braking of DC motor and portable device applications			
II.8	Static S	Servo Voltage Stabilizer		2+1	3	3
			Figure- 2 Marks Explanation-1 marks			
	Block	<u>diagram</u> Buck-boost Transformer				
	Input voltage from mains	IGBT bridge or AC-AC converter	ased			

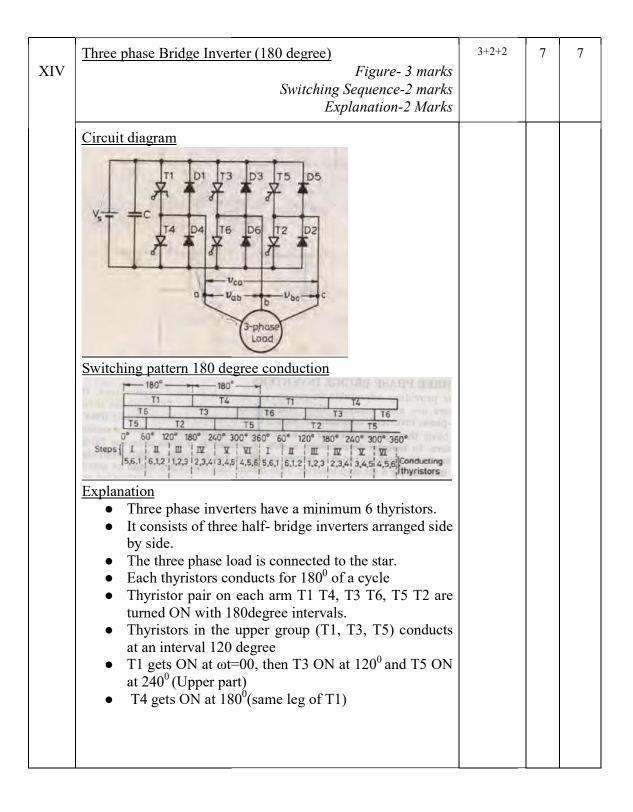

	 Explanation In static stabilizer, no moving parts as in servo stabilizer. It consists of buck boost transformer, IGBT power converter, and microcontroller or DSP based Controller. Whenever the microprocessor detects the voltage dip, it sends the PWM pulses to the IGBT converter such that it generates the voltage which is equal to that of the deviated amount from nominal value. 			
	Requirements of practical inverter Any six requirements 0.5 marks each	0.5*6	3	3
II. 9	 The voltage source inverter will produce an output voltage or current to required ranges and frequencies. Power factor of an inverter ranges from 0.6 to 0.8 VA rating of inverter= Power Required/Power Factor The inverter must have limited starting current. It must possess efficient energy saving property. An inverter with less noise is preferred. The output voltage of an inverter must be pure sine wave, sometimes it may be square wave. Pure sine wave inverters will have great accuracy and less power loss. But the cost is high. 			
II.10	<u>SMPS</u> Figure-2 marks Explanation -1 Marks	2+1	3	3
	Block diagram of SMPS			


	 as SMPS It consists of an input rectifier, high frequency converter, output rectifier and a feedback control circuitry. 			
	PART C			
III	Turn ON methods of SCR	1+1+5	7	7
111	State turn ON Process of SCR-1 mark			
	Structure of SCR-1 mark			
	any two methods (2.5 marks each)			
	Turn ON Process of a SCR means to bring the SCR from forward blocking mode to Forward Conduction Mode.			
	Anode PNPN Cathode			
	Explain any two methods			
	With Anode is positive with respect to cathode, a thyristor can be turned ON by the following methods.			
	1Forward voltage triggering			
	Increase forward voltage so that reverse biased junction J2 breaks down and SCR conducts			
	2.Thermal/or temperature triggering			
	The increase in temperature causes increase in leakage current and junction J2 breaks down and SCR conducts			
	3. dv/dt triggering,			
	Reverse biased junction J2 behaves like a capacitance. If dc/dt is increased, icincreases and SCR conducts			



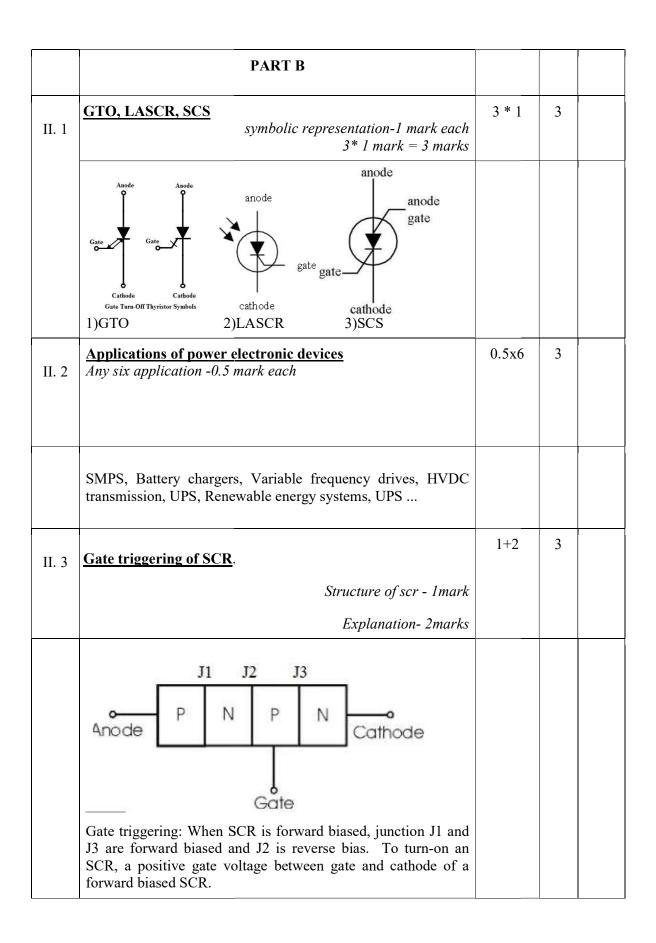

	 When VGS=+ve, negative charge electrons are induced in the substrate near to the oxide layer. This enhance the N channel formation and the current is flowing through the MOSFET from Drain to source 			
VII	Single phase full wave controlled Rectifier with R L load Figure-3marks Waveform-2Marks Working-2 Marks	3+2+2	7	7
	Circuit diagram			



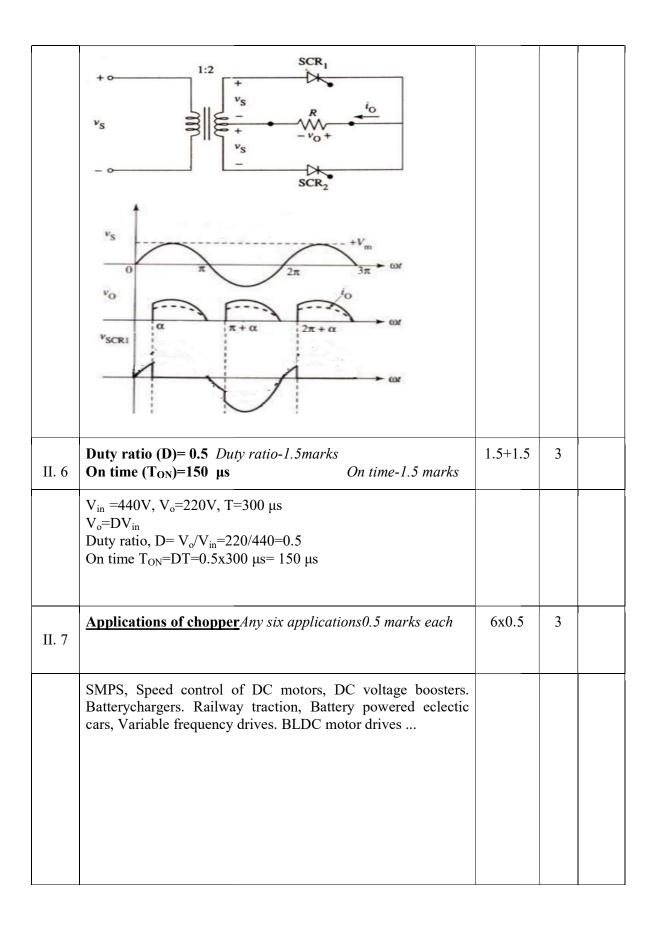


X	DC Chopper Definition-1 Mark Figure-2 Marks Working-2 Marks list types of Chopper-2 marks	1+2+2+2	7	
	<u>Definition:</u> - DC chopper converts Fixed DC to variable DC. <u>Step down (or Step up) Chopper Diagram</u> .			7
	$\frac{Chopper}{V_{s}}$			
	Sw is ON, current flows through the inductor and load. Sw is OFF, the stored energy in the inductor discharged through the load and the freewheeling diode. Hence output voltage is less than the input voltage and it is called a step down Chopper.			
	• Duty cycle, $\alpha = T_{on}/T$			
	 Different types of Chopper Type A (first Quadrant Chopper) Type B (second Quadrant Chopper) Type C (Two Quadrant type A Chopper) Type D (Two Quadrant Type B chopper) Type E(four quadrant Chopper) 			
XI	Half Bridge Inverter with RL load and Feedback diode Figure-3 marks Waveform-2 marks Working-2Marks	3+2+2	7	7
	Circuit diagram			

XIII	Series inverter Series Inverter (definition)-1 Mark Figure-3 marks Working-3 Marks	1+3+3	7	7
	 Working-3 Marks Inverters in which commutating elements such as L and C are connected in series with the load is called a series inverter. Self-commutated inverter or load commutated inverter These inverters are operated at high frequencies and hence small commutating elements. Used in induction heating, fluorescent lighting etc. Circuit consists of Thyristor T1, T2 and a load R which is connected in series with the commutating elements L and C Mode 1: T1 is ON, T2 is OFF. The circuit current is flowing through T1, L ,C, R.the capacitor and inductor charges with this polarity. Mode 2: Both T1 and T2 are OFF. The charge in the capacitor commutated the thyristor T1. No output current is flowing in this Mode Mode 3: T1 OFF, T2 ON. The capacitor and inductor discharged through T2 and the load current is reversed. 			
	V _s (ord SR -			

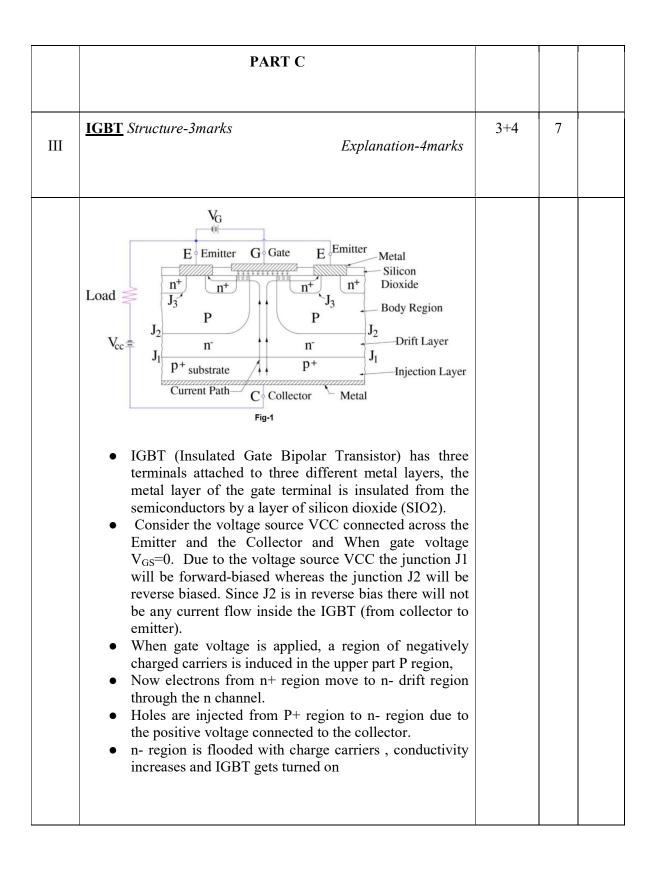


Scoring Indicators


Model Question Paper II

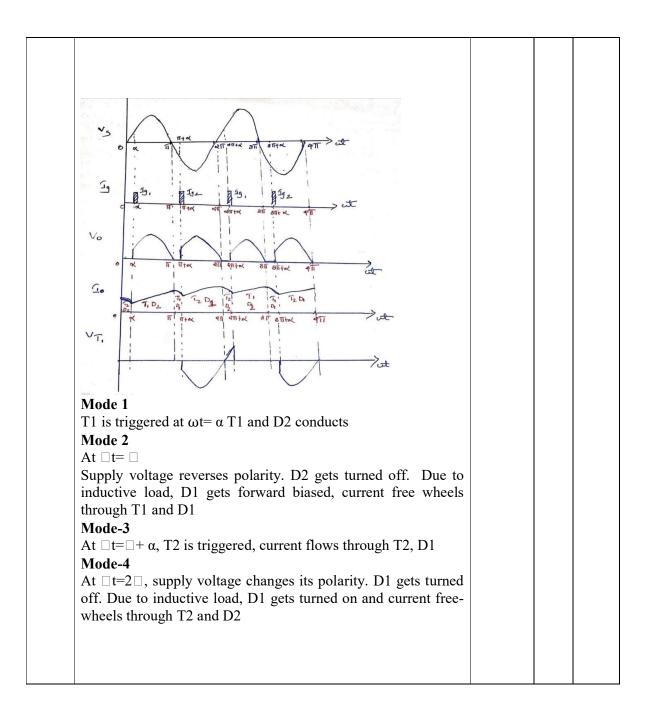
POWER ELECTRONICS AND CIRCUITS

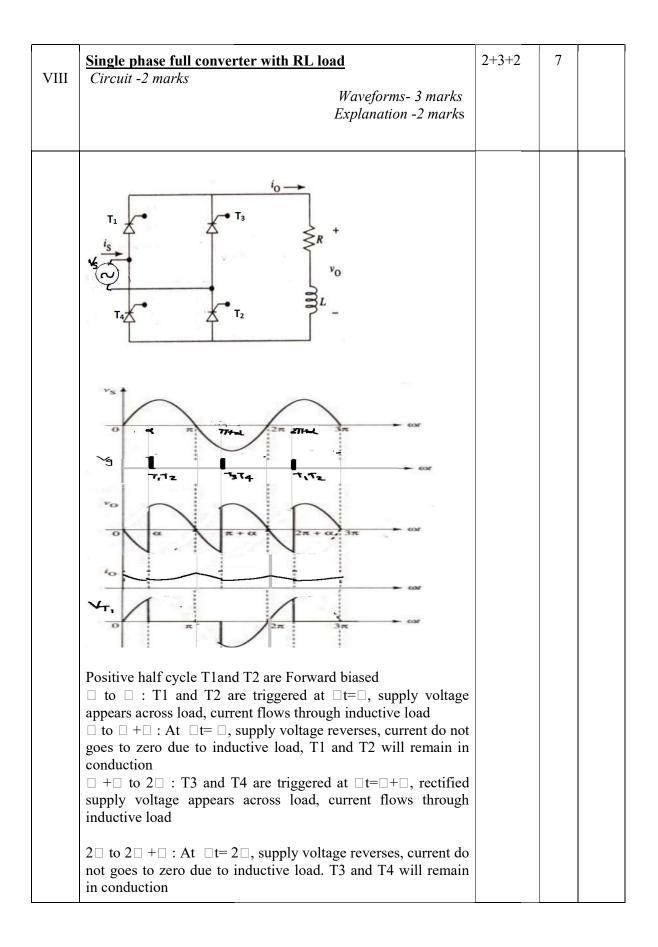
Q No	Scoring Indicators	Split score	Sub Tot al	Total score
	PART A			
I. 1	It is the value of anode current below which SCR cannot maintain current through it and turns Off.	1	1	
I. 2	Depletion mode, Enhancement mode	0.5x2	1	
I. 3		1	1	
I. 4	Phase controlled rectifiers are a class of rectifier in which diodes are replaced by thyristors and this thyristors can be used to control the output voltage by varying the firing angle of SCR.	1	1	
I. 5	Increases average output voltage by preventing it from going into negative	1	1	
I. 6	Boost converter/Step up chopper	0.5x2	1	
I. 7	Constant frequency and Variable frequency control	0.5x2	1	
I. 8	(Any two) Series, Parallel, CSI, VSI, Half bridge, Full bridge, Three phase	0.5x2	1	
I. 9	(Any two) Buck, Boost, Buck boost	1	1	

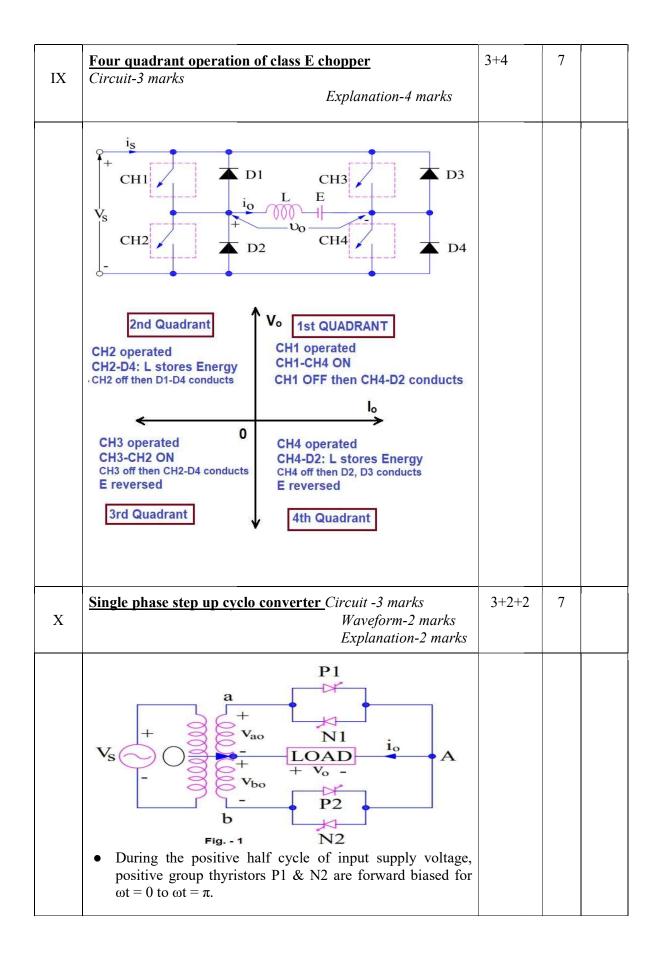


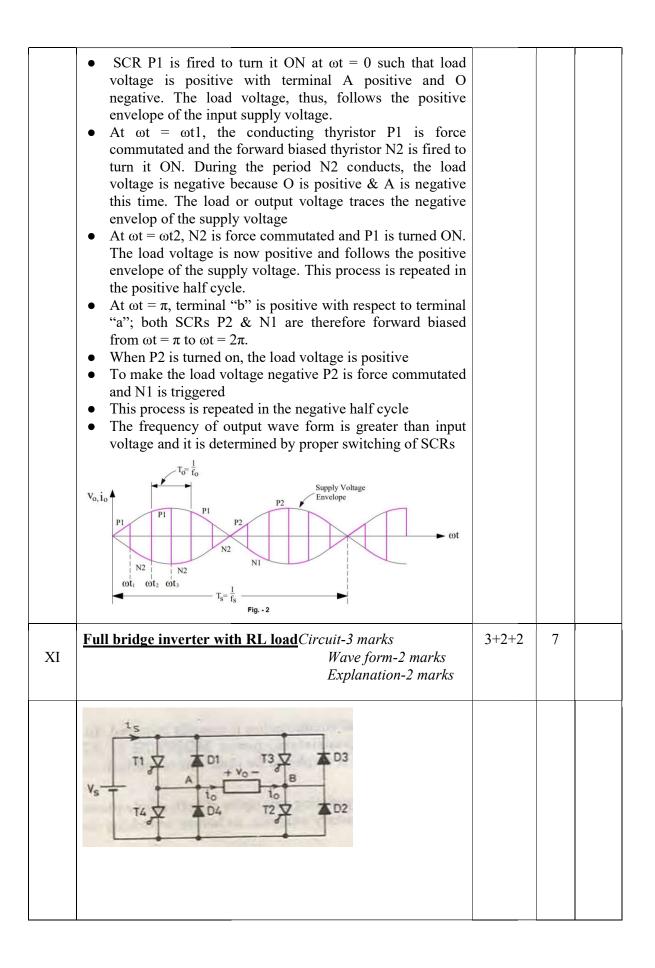
	This gives rise to a gate current where charges are injected into the inner p layer of the device. This effectively reduces the voltage at which forward break- over occurs. ie; the voltage at which junction J2 goes into avalanche break down and SCR moves into conduction state. Higher the gate current, the lower the forward break-over voltage.			
II. 4	Three phase controlled bridge rectifier figure -3 marks	3	3	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
II. 5	Single phase fully controlled centre tapped rectifier Circuit diagram -1.5 marks Waveforms- 1.5 marks	1.5+1.5	3	

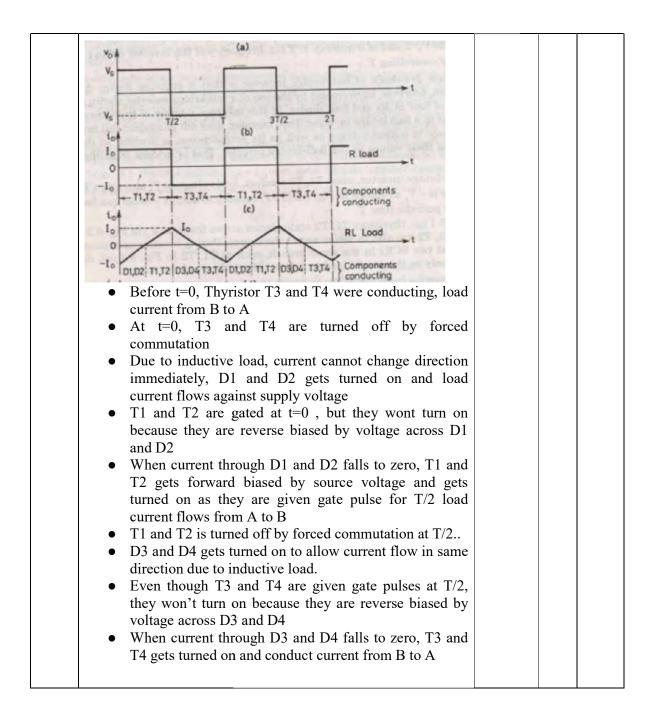
II. 8	Comparison between CSI and	VSI , Any three 1 marks each	1x3	3	
	CSI	VSI			
	VSI is fed from a DC voltage source having small or negligible impedance	CSI is fed from a DC source having high impedance			
	Input voltage is maintained constant	Input current is made constant			
	The output voltage does not depend on load	The output current does not depend on load			
	The load current waveform and magnitude depends upon load impedance	The load voltage waveform and magnitude depends upon load impedance			
	Commutation circuit is complicated	Commutation circuit is simple			


II. 9	<u>Sine PWM</u> Figure-1.5 marks Explanation-1.5 mark	1.5+1.5	3	
	Reference wave, freq. f v_{o} $v_{$			
II.10	Advantages of electric drive Any 6 advantages- 0.5 marks each	6x0.5	3	
	 It is quite clean due to the absence of fuel, fumes etc. Electric motors are available over a wide range of power few watt(5W) to mega watt Electrical energy can be transmitted easily No need of fuel storage and fuel consumption No hazardous fuel is required Less pollution 			

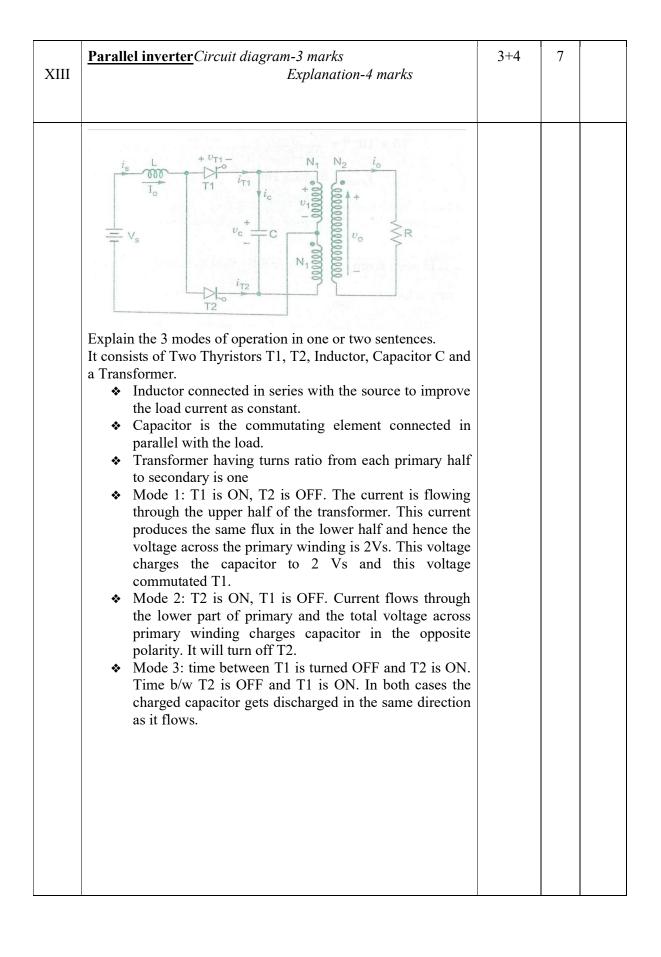


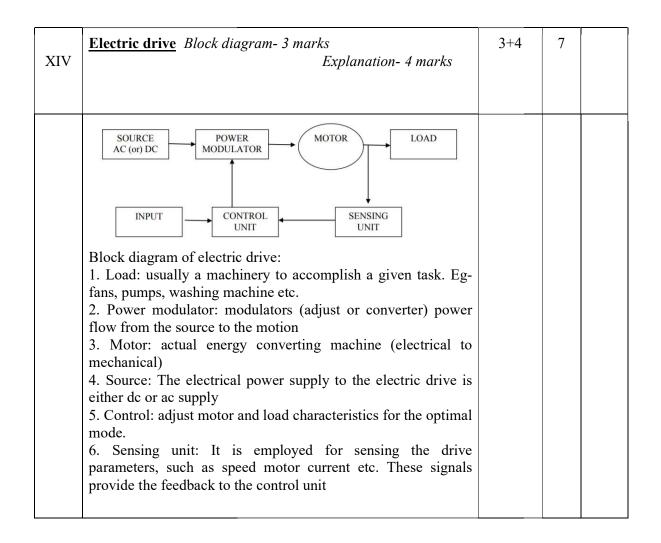

IV	Working of UJTEquivalent circuit-3 marks Explanation-4 marks	3+4	7	
	 The equivalent circuit of UJT is shown with voltage biasing. R_{BB} = R_{B1}+R_{B2} Voltage across R_{B1},V₁= V_{BB}R_{B1}/(R_{B1+}R_{B2})=V_{BB}xR_{B1}/R_{BB} V_{B1}= ηV_{BB} η=R_{B1}/R_{BB} is called the intrinsic stand off ratio As P region is closer to B, R_{B1}>R_{B2} 			
	 If V_E< V_D+ ηV_{BB}, then PN junction become reverse biased and UJT is in off state (V_D-cut in voltage of diode) If V_E>V_D+ ηV_{BB}, then PN junction become forward biased. This emitter voltage value V_E is called the peak-point voltage and is denoted by V_P. When V_E = V_P, emitter current I_E flows through the R_{B1} to the ground, that is, B₁. Under these conditions, holes are injected from P type material to N type bar In N type bar, these holes are repelled by positive B₂ terminal and are attracted by B₁ terminal This accumulation of holes decreases the resistance R_{B1} in the B₁region. Hence the emitter current I_E increases. Now UJT is in on state. 			
V	Turn off process of SCR Commutation explanation- 2 marks Natural commutation-2.5 marks Forced commutation-2.5 marks	2+2.5+2 .5	7	
	To turn off a conducting SCR,			
	 The anode or forward current of SCR must be reduced to zero or below the level of holding current and then, A sufficient reverse voltage must be applied across the SCR to regain its forward blocking state. The reverse voltage which causes to commutate the SCR is called commutation voltage. Depending on the commutation voltage located, the commutation methods are classified into two major types. Those are 1) Natural commutation 			


		·	,,	
	If the SCR is connected to an AC supply, at every end of the positive half cycle the anode current goes through the natural current zero and also immediately a reverse voltage is applied across the SCR. These are the conditions to turn OFF the SCR.This method of commutation is also called as source commutation, or line commutation			
	2) Forced commutation			
	In case of DC circuits, there is no natural current zero to turn OFF the SCR. In such circuits, forward current must be forced to zero with an external circuit to commutate the SCR hence named as forced commutation. Here the commutating circuit consists of components like inductors and capacitors called as commutating components. These commutating components cause a reverse voltage across the SCR that immediately bring the current in the SCR to zero.			
VI	<u>DIAC</u> Construction figure-3 marks Explanation- 4 marks	3+4	7	
	 MT1 (+ve) MT1 (+ve) MT2 (+ve) F.B. (+ve) MT2 (+ve) MT2 (+ve) MT2 (+ve) The above image shows the clear operation of the DIAC with respective to the polarities. Consider the MT1 terminal to be positive, then the P1 layer near MT1 will be activated, Junction between P1-N2 and P2-N3 are Forward Biased and the junction between N2-P2 is reverse biased. When applied voltage is greater than break over voltage N2-P2 junction breaks down and DIAC moves into conduction The conduction will be taking place in the order of P1- 			


			1	
	 N2-P2-N3. When the current is flowing from MT1 to MT2 If we consider MT2 terminal to be positive, then the P2 layer near MT2 will be activated and The junctions between P2-N2 and P1-N1 are forward biased and the junction Between N2- P1 is reverse biased When applied voltage is greater than break over voltage N2-P1 junction breaks down and DIAC moves into conduction The conduction will be taking place in the order of P2-N2-P1-N1. The current will be flowing from MT2 to MT1 Hence the conduction will be possible in both the directions. 			
VII	Full wave semi controlled rectifier Circuit -2 marks Wave forms- 3marks Explanation-2 marks Explanation-2 marks Explanation-2 marks	2+3+2	7	







Prepared By :

Chithra S R Lecturer in EEE Govt. Polytechnic College Punalur

Vineeth V

Lecturer

Govt polytechnic college Kalamassery

Scrutinized By :

Ajmal M M

Lecturer

Govt polytechnic college Muttom