N22-2110220142 A

Reg. No	•••	•••	•	 •	••	• •	•	•	•	•	 	• •	• •	•
Signature											•			

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

ELECTRICAL AND ELECTRONICS MEASURING INSTRUMENTS

[Maximum Marks: 75]

[Time: 3 Hours]

PART-A

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		(9 x 1 = 9 Marks) Module Outcome Cognitive level		
1.	Name any two methods used to provide controlling torque in	M1.02	R	
	indicating type instruments.			
2.	Name the type of instruments which has uniform scale and can be	M1.03	U	
	used only for DC measurements.			
3.	Name any one bridge which can be used to measure unknown	M2.03	R	
	capacitance.			
4.	List out the two types of coil present in an electrodynamo meter type	M2.04	R	
	instrument.			
5.	Murray loop test is used to find out	M2.02	U	
6.	List out any two uses of Cathode ray oscilloscope.	M3.04	R	
7.	Write one example for an instrument which is used to measure	M3.02	R	
	insulation resistance.			
8.	Define the term transducer.	M4.01	R	
9.	Write one application of thermistor.	M4.02	R	

PART-B

II. Answer any *eight* questions from the following. Each question carries *'three'* marks.

(8 x 3 = 24 Marks) Module Outcome Cognitive level

1.	Define indicating and record	M1.01	R	
2.	Write down the resistance ra	M2.01	R	
	A) Low resistance B) M			
3.	Draw the connection diagra meter.	M2.04	U	
4.	Match the following related	M2.04	U	
	System	Main component		
	Driving system	Aluminium disc		
	Breaking system	Electromagnets		
	Moving system	Permanent magnet		
	Registering system	Gear mechanism		

5.	Describe the voltmeter ammeter method to measure resistance.	M3.01	U
6.	Draw the block diagram representation of a digital frequency meter.	M3.03	R
7.	List out any six basic requirements of a transducer.	M4.01	R
8.	Define following specifications of a transducer.	M4.01	R
	A) Operating range B) accuracy C) sensitivity		
9.	Distinguish between active and passive transducers.	M4.01	R
10.	Describe the operation of DC tacho generator.	M4.03	U

PART-C

Answer all questions. Each question carries 'seven' marks

 $(6 \times 7 = 42 \text{ Marks})$ Module Outcome Cognitive level III. Find the value of shunt and multiplying power of an MC instrument M1.04 Α which is extended to measure 20 A. if the meter has a full scale deflection at 1mA and internal resistance of 5 ohm. OR IV. Develop circuit diagrams to extend the range of an MC instrument M1.04 А which has a full scale deflection at 20mA and 1V to A) 1A ammeter B) 30 V voltmeter. V. Explain the construction and working principle of a moving iron M1.03 U instrument. OR VI. Describe different types of damping mechanism used in indicating M1.02 U type instruments. VII. Describe the method of medium resistance measurement using M2.01 U wheatstone bridge. OR VIII. Describe the use of a Maxwell inductance bridge. M2.03 U Explain the working principle of digital voltmeter with the help of IX. M3.03 U block diagram. OR U Х. Explain the operation of a reed type frequency meter. M3.01 XI. Explain the mechanism of westone type synchroscope. U M3.01 OR XII. U Describe the block diagram representation of cathode ray M3.04 oscilloscope. XIII. Illustrate general block diagram of a data acquisition system. M4.04 U OR XIV. Describe the method of measurement of displacement using LVDT. M4.02 U
