Model Question Paper I

FUNDAMENTALS OF ELECTRIC CIRCUITS

PART A

I. Answer all questions in one word or one sentence. Each question carries 1 mark ($9 * 1=9$ marks)

1	Name any one dc network theorem	M 1.02	R
2	Two branches meeting at a point in a circuit is called.......	M 1.01	U
3	Write the format of polar form	M 2.01	U
4	Match the following types of load and their power factors: Resistive - lagging Capacitive-in phase Inductive - leading	M 2.01	U
5	Write the equation of power in a pure resistive circuit	M 2.01	U
6	Any one method of solving parallel circuit is	M3.02	R
7	Power factor in a parallel circuit at resonance is	M 3.04	U
8	Write the relation between line and phase values of voltage in star system	M 4.02	U
9	Equation of three phase ac power is	M 4.04	U

PART B

II. Answer any eight questions from the following, each question carries 3 marks. ($8 * 3=24$ marks)

1	State reciprocity theorem.	M 1.02	R
2	Write the procedure to Nortonize a given circuit.	M 1.03	U
3	Two vectors $\mathrm{A}=20+\mathrm{j} 30, \mathrm{~B}=-10-\mathrm{j} 15$.find $\mathrm{A}-\mathrm{B}$ and express the result in polar form	M2.01	A
4	Draw the vector and impedance diagrams of R-L series circuit	M 2.02	A
5	Determine the capacitance of the capacitor of a circuit consisting of $110 \mathrm{~V}, 40 \mathrm{~W}$ lamp in series with a capacitor. Supply voltage is $230 \mathrm{~V}, 50 \mathrm{~Hz}$.	M 2.03	A
6	Define the terms in a parallel circuit (1).Resonance (2).Q factor	M 3.04	R
7	Draw the vector diagram of a parallel circuit with one branch consisting of a resistor of 14Ω and a reactance of 20Ω. A second branch consists of a resistor of 25Ω.A potential difference of $100 \mathrm{~V}, 50 \mathrm{~Hz}$ is applied across the combination.	M 3.02	A
8	Write any three advantages of three phase systems	M 4.01	R
9	Obtain the relation between line and phase values of voltage in a star connected system.	M 4.02	U
10	Write the equations of various three phase powers .	M4.04	U

PART C

Answer ALL questions. Each question carries 7 marks.
($6 * 7=42$ marks)

III	By using superposition theorem find the current through 15Ω resistor.	M 1.04	A
	OR		
IV	Obtain Norton's equivalent circuit of the given circuit.	M 1.04	A
V	Write the procedure to thevenize a given circuit.	M 1.03	U
	OR		
VI	State and explain the theorems (a)Maximum power transfer theorem (b) Superposition theorem.	M 1.02	U
VII	A circuit consists of 10Ω resistance and 8Ω inductive reactance are in series and takes a current of 6 ampere. Determine (i) voltage across resistance and inductance (ii) total supply voltage (iii)power factor of the circuit.	M 2.03	A
	OR		

VIII	Perform the following operations and find magnitude and slope in each case.(a) $A+B(b) A-B$ (c) $A B$, where $A=20+j 15$ and $B=30-j 4$	M 2.01	A
IX	Derive the equation of active power in an R-L series circuit	M 2.02	U
	OR		
X	Draw the vector and impedance diagrams of R-C series circuit. Also write the equation of power factor.	M2.03	U
XI	Two impedances $\mathrm{Z} 1=(10+\mathrm{j} 15) \mathrm{ohm}$ and $\mathrm{Z} 2=(6-\mathrm{j} 8)$ ohm are connected in parallel. If the total current supplied is 15 A , determine the current and power taken by each branch. Use admittance method.	M 3.03	A
	OR		
XII	A coil of resistance 14Ω and reactance 20Ω is shunted by a non resistance of 25Ω and a p.d of 100 V at 50 Hz is impressed across the combination. Find (i)the current in each branch(ii)total current	M 3.03	A
XIII	A balanced star connected load of $8+\mathrm{j} 6$ ohm per phase is connected to a 3- phase, 230V.Find (i)Line current (ii)Power (iii)Reactive power	M 4.02	A
	OR		
XIV	With the help of a vector diagram derive the relation between line and phase values of current in a delta connected system .	M 4.02	A

Scoring Indicators

Model Question Paper I

FUNDAMENTALS OF ELECTRIC CIRCUITS

Q No	Scoring Indicators	Split score	Sub Tot al	Total Score
	PART A			
I. 1	Superposition theorem Maximum power transfer theorem Thevenin's theorem Norton's theorem Reciprocity theorem (Write any one theorem)		1	1
I. 2	Junction or Node		1	1
I. 3	A vector, $\mathrm{E}=\mathrm{E}<\Theta$, where E -magnitude and Θ-inclination		1	1
I. 4	Resistance-in phase Capacitive-leading Inductance-lagging		1	1
I. 5	$\mathrm{P}=\mathrm{VI}$ watts		1	1
I. 6	Vector method Admittance method j-method (Write any one method)		1	1
I. 7	unity (Write any one)		1	1
I. 8	$\mathrm{V}_{\mathrm{L}}=\sqrt{3} \mathrm{~V}_{\mathrm{ph}}$		1	1
I. 9	$P=\sqrt{3} V_{L} I_{L} \operatorname{Cos} \phi$		1	1

	PART-B			
II. 1	Reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.		3	3
II. 2	1. Remove the resistance (if any) across the two given terminals and put a short- circuit across them 2. Compute the short circuit current 3. Remove all voltage and current sources 4. Find Norton's resistance 5. Join the current source in parallel across the Norton's resistance 6. Complete the equivalent circuit	$\begin{gathered} 6 \\ * 0.5 \mathrm{~m} \\ \text { ark } \end{gathered}$	3	3
II. 3	$\begin{aligned} & A=20+j 30, B=-10-j 15, A-B=? \\ & A-B=20+j 30+10+j 15=30+j 45 \\ & \text { Magnitude }= \\ & \sqrt{30^{2}+45^{2}}=54.08 \\ & \theta=\tan ^{-1} \frac{45}{30} \\ & =56.309^{\circ} \end{aligned}$ Therefore in polar form , $\mathrm{A}-\mathrm{B}=54.08<56.309^{\circ}$ (Calculation of each quantity carries 1marks)	$\begin{aligned} & 3 \\ & \text { *1mar } \\ & \mathrm{k} \end{aligned}$	3	3

II. 4	PHASOR DIAGRAM IMPEDANCE DIAGRAM	$\begin{aligned} & 2 * 1.5 \\ & \text { marks } \end{aligned}$	3	3
II. 5	Voltage across the capacitor $\begin{aligned} & \quad V_{C}=\sqrt{230^{2}-110^{2}}=202 \mathrm{~V} \\ & I=\frac{P}{V}=\frac{40}{110}=0.3636 \mathrm{~A} \\ & X_{C}=\frac{V_{C}}{I}=\frac{202}{0.3636}=555.55 \Omega \end{aligned}$ But $\begin{aligned} & X_{C}=\frac{1}{2 \pi f C} \\ & \mathrm{C}=5.73 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & 0.5+0 \\ & 5+0.5 \\ & +1+0 . \\ & 5 \end{aligned}$	3	3
II. 6	(1)Resonance - When the reactive component of the line current becomes zero. The frequency at this condition is called resonance frequency (2) Q-factor- Current magnification in an RLC parallel circuit is called its Q-factor $Q \text { factor }=\frac{I_{C}}{I}$ Also $Q \text { factor }=\frac{X_{L}}{R}$	$\begin{aligned} & 1.5+ \\ & 1.5 \end{aligned}$	3	3

II. 9	Let $\mathrm{E}_{\mathrm{R}}=\mathrm{E}_{\mathrm{Y}}=\mathrm{E}_{\mathrm{B}}=\mathrm{E}_{\mathrm{ph}}$ are the phase values of voltage Let $E_{R Y}=E_{L}$ be the line value of voltage By parallelogram law method, $\mathrm{E}_{\mathrm{RY}}=\sqrt{\left(\square_{\square h}^{2}+\square_{\square h}^{2}+2 * \square_{\square h}^{2} * \square \square \square 60\right)}$ ie, $\mathrm{E}_{\mathrm{L}}=\sqrt{3 \square_{\square h}^{2}}=\sqrt{3} * \square_{\square h}$ (For each step 1 mark, diagram-1 mark)	$1+1+1$	3	3
II. 10	$\begin{aligned} & \text { Active power }=\sqrt{ } 3 \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \cos \phi \\ & \text { Reactive power }=\sqrt{ } 3 \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \sin \phi \\ & \text { Apparent power }=\sqrt{ } 3 \mathrm{E}_{\mathrm{L}} \mathrm{I}_{\mathrm{L}} \end{aligned}$	$1+1+1$	3	3

When 40 V source is removed, the circuit becomes as shown in figure 2 Figure 2 To find $I_{2}^{\prime \prime}$ $\begin{aligned} & \text { Total resistance }=30+\left(\frac{15 \times 100}{15+100}\right)=43 \Omega \\ & \qquad I_{2}^{\prime \prime}=\frac{20}{43}=0.47 \mathrm{~A} \end{aligned}$ by current division rule $I^{\prime \prime}=0.47 x \frac{100}{(15+100)}=0.41 \mathrm{~A}$ therefore , current through 15Ω resistor is $\begin{aligned} & I=I^{\prime}+I^{\prime \prime} \\ & =0.24+0.41 \\ & =0.65 \mathrm{~A} \end{aligned}$ (Calculations of step -1- and step-2 -2.5 marks each step-30.5 mark, Figures-0.5 marks each)			

IV	To find I_{sc} by short-circuiting the terminals A and B as shown below To find battery current, I $\text { Total resistance }=10+\frac{10 \times 15}{10+15}=10+6=16 \Omega$ Therefore $\mathrm{I}=\frac{100}{16}=6.25 \mathrm{~A}$ By current division rule $\mathrm{I}_{\mathrm{sc}}=\mathrm{Ix} \frac{R 2}{R 2+R 3}$ $=6.25 \times \frac{10}{10+15}=2.5 \mathrm{~A}$ To find R_{N} with respect to A and B, short circuit the	7	7	7

	voltage source.then the circuit becomes Then $\mathrm{R}_{\mathrm{N}}=15+\frac{10 \times 10}{10+10}=15+5=20 \Omega$ Hence Norton's equivalent circuit can be obtained as :			
V	1. Temporarily remove the load resistance 2. Find the open circuit voltage called Thevenin's voltage 3. Compute the equivalent resistance(Thevenin's resistance) of the whole network as viewed from the open load terminals 4. Obtain the Thevenin's equivalent circuit 5. Re-connect the load resistance 6. Find the load current	7	7	7
VI	(a)Maximum power transfer theorem A resistive load will abstract maximum power from a	$\begin{aligned} & 3.5+ \\ & 3.5 \end{aligned}$	7	7

	network when the load resistance is equal to the resistance of the network as viewed from the output terminals with all energy sources(emfs) removed with their internal resistances (b)Superposition theorem- In a network of linear resistances containing more than one source of emf, the current which flows at any point is the sum of all the currents which would flow at that point if each emf where considered separately and all the other emfs replaced by their internal resistances			
VII	Given , $\mathrm{R}=10 \Omega, \mathrm{X}_{\mathrm{L}}=8 \Omega, \mathrm{I}=6 \mathrm{~A}$ (i) $\mathrm{V}_{\mathrm{R}}=\mathrm{IR}=6 \times 10=60 \mathrm{~V}$ $\mathrm{V}_{\mathrm{L}}=\mathrm{IX} \mathrm{X}_{\mathrm{L}}=6 \mathrm{x} 8=48 \mathrm{~V}$ (ii) $\mathrm{Z}=\sqrt{R^{2}+X L^{2}}=12.8 \Omega$ Therefore supply voltage, $V=I Z=6 \times 12.8=76.8 \mathrm{~V}$ (iii) p.f $=\frac{R}{Z}=0.781$ (Equations- 3 marks, Calculations- 4 marks)	3+4	7	7
VIII	(a) $\begin{aligned} & \mathrm{A}+\mathrm{B}=20+\mathrm{j} 15+30-\mathrm{j} 4 \\ & \quad=50+11 \mathrm{j} \end{aligned}$ $\begin{aligned} & \text { Magnitude }=\sqrt{50^{2}+11^{2}}=51.2 \\ & \text { Slope }=\tan ^{-1} \frac{11}{50}=12.4^{0} \end{aligned}$ (b)	3+4	7	7

	$\begin{aligned} \mathrm{A}-\mathrm{B} & =20+\mathrm{j} 15-30+\mathrm{j} 4 \\ & =-10+\mathrm{j} 19 \end{aligned}$ $\text { Magnitude }=\sqrt{\left(-10^{2}\right)+19^{2}}=21.47$ $\text { Slope }=\tan ^{-1} \frac{-19}{10}=-62.2^{0}$ (c) $\begin{gathered} \mathrm{AB}=(20+\mathrm{j} 15) *(30-\mathrm{j} 4) \\ =600-80 \mathrm{j}+450 \mathrm{j}+60 \\ =660+\mathrm{j} 370 \\ \text { Magnitude }=\sqrt{660^{2}+370^{2}}=756.64 \\ \text { Slope }=\tan ^{-1} \frac{370}{660}=29.27^{0} \end{gathered}$ (Equations- 3 marks, Calculations- 4 marks)			
IX	Instantaneous power, $\begin{aligned} & \quad \mathrm{P}=\mathrm{v}^{*} \mathrm{i} \\ & \quad=\square_{\square \square \square \square \square \square * \square \square \square \square \square(\square \square-\square)} \\ & =\frac{\square_{0} * \square \square}{2}(\square \square \square(\square \square-\square \square+\square)-\square \square \square(\square \square+ \\ & \square \square+\square)) \\ & =\frac{\square_{\square} * \square}{2}\left(\square \square \square(\square)-\frac{\square_{0} * \square \square}{2}(\square \square \square(2 \square \square+\square))\right. \end{aligned}$ Since the second term is a double frequency component and its value becomes zero when	1*7	7	7

\begin{tabular}{|c|c|c|c|c|}

\hline \& \begin{tabular}{l}
integrated over a complete cycle.

Total power,
$$
\begin{aligned}
\mathrm{P}= & \frac{\square_{\square} \square_{\square}}{2} \\
& =\frac{\square_{\square}}{\sqrt{2}} \frac{\square_{\square}}{\sqrt{2}} \\
& =
\end{aligned}
$$

\square

(Each main steps- 1 mark each $=1$ *7=7marks)
\end{tabular} \& \& \&

\hline X \& | (Vector diagram) |
| :--- |
| (Impedance diagram) |
| power factor $=$ \square |
| (Figures-3 marks each ,equation=1mark) | \& $3+3+1$ \& 7 \& 7

\hline XI \& | For Branch-I $\square_{1}=\sqrt{10^{2}+15^{2}}=18.03$ |
| :--- |
| Conductance $\square_{1}=\frac{\square_{1}}{\square_{1}^{2}}=0.0308 \mathrm{v}$ | \& $3+4$ \& 7 \& 7

\hline
\end{tabular}

susceptance $\square_{1}=\frac{-\square_{\square 1}}{\square_{1}^{2}}=-0.046 \mho($ For Branch-II $\square_{2}=\sqrt{6^{2}+8^{2}}=10$ Conductance $\square_{2}=\frac{\square_{2}}{\square_{2}^{2}}=0.06 \mathrm{~J}$ susceptance $\square_{2}=\frac{\square_{\square 2}}{\square_{2}^{2}}=0.08 \mathrm{v}$ Total conductance, $\square=\square_{1}+\square_{2}=0.0908$ च Total susceptance, $\square=\square_{1}+\square_{2}$ $=-0.046+0.08=0.0339 v$ Admittance of the circuit $\mathrm{Y}=\sqrt{\square^{2}+\square^{2}}=0.0969 \mathrm{~J}$ Supply Voltage, $\mathrm{V}=\frac{\square}{\square}=\frac{15}{0.0969}=154.79$ $\begin{aligned} & \square_{1}=\frac{\square}{\square_{1}}=8.585 \square \\ & \square_{2}=\frac{\square}{\square_{2}}=15.479 \square \\ & \quad \mathrm{P}_{1}=\square_{1}^{2} * \square_{1}= \end{aligned}$ 737 $\square_{2}=\square_{2}^{2} * \square_{2}=1437.6$ (Equations- 3 marks, Calculations- 4 marks)			

XIII	(i)	3+4		
	$\begin{gathered} \mathrm{E}_{\mathrm{ph}}=\frac{230}{\sqrt{3}}=132.8 \mathrm{~V} \\ Z_{p h}=\sqrt{R_{p h}^{2}+X_{p h}^{2}}=\sqrt{8^{2}+6^{2}} \\ =10 \Omega \\ I_{p h}=\frac{E_{p h}}{Z_{p h}}=13.28 \mathrm{~A} \\ \text { Line current, } \mathrm{I}=I_{p h}=13.28 \mathrm{~A} \\ \cos \emptyset=\frac{R_{p h}}{Z_{p h}}=0.8 \mathrm{lag} \end{gathered}$		7	7
	(ii) Power $=\sqrt{3} E_{L} I_{L} \cos \emptyset=4232 \mathrm{~W}$ (iii) $\phi=\cos ^{-1} 0.8$ Reactive Power $=\sqrt{3} E_{L} I_{L} \operatorname{Sin} \emptyset=$ 3174 VAr (Equations- 3 marks, Calculations- 4 marks)			

XIV	Let $\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{Y}}=\mathrm{I}_{\mathrm{B}}=\mathrm{I}_{\mathrm{ph}}$ be the phase values of currents Let $I_{L 1}=I_{R}-I_{B}=I_{R}+\left(-I_{B}\right)$ be the line value of current By parallelogram law method, $\begin{aligned} & \mathrm{I}_{\mathrm{LI}}=\sqrt{\left(\square_{\square h}^{2}+\square_{\square h}^{2}+2 * \square_{\square h}^{2} * \square \square \square 60\right)} \\ &=\sqrt{3 \square_{\square h}^{2}}=\sqrt{3} * \square_{\square h}, \\ & \cos 60^{0}=0.5 \end{aligned}$ ie. Line current $=\sqrt{ } 3$ phase current (Diagram- 3 marks, Derivation- 4 marks)	$3+4$	7	7

Module wise question analysis

Question No	Module				No of questions
	I	II	III	IV	
Part A (1 Mark)	2	3	2	2	9
Part B (3 Marks)	2	3	2	3	10
Part C (7 Marks)	4	4	2	2	12
Total questions	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{3 1}$
Total (Marks)=123	$\mathbf{3 6}$	$\mathbf{4 0}$	$\mathbf{2 2}$	$\mathbf{2 5}$	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understanding	Apply	
Part A (1 Mark)	2	7	0	9
Part B (3 Marks)	3	3	4	10
Part C (7 Marks)	0	4	8	12
Total questions	$\mathbf{5}$	$\mathbf{1 4}$	$\mathbf{1 2}$	$\mathbf{3 1}$
Total (Marks)=123	$\mathbf{1 1}$	$\mathbf{4 4}$	$\mathbf{6 8}$	

Prepared By :

Jayaram S
Head Of Department
Electrical \& Electronics Engineering
Govt. Polytechnic College Attingal

Scrutinised By :

Binu B. R
Head Of department
Electrical \& Electronics Engineering Govt. Polytechnic College, Pala

Model Question Paper II
 FUNDAMENTALS OF ELECTRIC CIRCUITS

Time: 3 Hour
Max.Marks: 75

PART A

I. Answer all questions in one word or one sentence. Each question carries 1 mark.

1	A circuit with no source of emf is called	M 1.01	U
2	Write any passive parameters in an electric circuit.	M 1.01	R
3	A node in a circuit is the meeting of	M 1.01	U
4	Write the format of trigonometric form...	M 2.01	U
5	Equation of alternating voltage is	M 2.02	R
6	Q factor of an RLC parallel circuit is	M 3.04	U
7	Resonance in an RLC parallel circuit occurs when	M 3.04	U
8	Define phase sequence in a three phase system	M 4.01	R
9	Write the relation between line and phase values of current in delta connected system	M 4.02	U

PART B

II. Answer any eight questions from the following, each question carries 3 marks.

$$
(8 * 3=24 \text { marks })
$$

1	Define the terms (i) active circuit (ii) loop (iii) linear network	M 1.01	R
2	State superposition theorem.	M 1.02	R
3	Derive the equation of power in a pure capacitive circuit.	M 2.01	U
4	Draw the vector and impedance diagrams of an R-L-C series circuit for XL greater than XC	M 2.02	U
5	Find the magnitude and slope of two vectors for A+B, where	M 2.01	A

	A=6+j8, B=3-j4.		
6	Define the terms in a parallel circuit (a)Admittance (b)Resonance.	M 3.02 M 3.04	R
7	Write the procedure of vector method in parallel circuits .	M 3.02	U
8	Compare the line and phase quantities in a delta system.	M 4.02	U
9	How star and delta connections are formed in three phase system	M 4.02	U
10	Derive the equation of active power in three phase systems.	M 4.04	U

PART C

Answer ALL questions. Each question carries 7 marks.
(6*7=42 marks)

| Convert the given circuit to a single voltage source in series with a
 single resistance . M 1.04 | A |
| :--- | :--- | :--- | :--- |

IV	By Norton's theorem, find the current flowing through 5 ohm resistor.	M 1.04	A
V	Write the procedure to Nortanize a given circuit.	M 1.03	U
	OR		
VI	State and explain the theorems (a)Maximum power transfer theorem (b) reciprocity theorem	M 1.02	U
VII	Define and derive resonance frequency in an RLC series circuit .	M 2.04	U
	OR		
VIII	Derive the equation of active power in an R-C series circuit	M 2.02	U
IX	A circuit consists of two branches connected in parallel across a $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Branch-1-a resistor of 200Ω, Branch-2-a 50Ω resistor in series with a $30 \mu \mathrm{~F}$ capacitor. Calculate the branch currents and total current.	M 3.03	A
	OR		
X	Draw the vector diagram of the given circuit .	M 3.03	A

	$4 I$ $200<0^{\circ}$		
XI	For the given star system, find the equivalent values in delta system	M 4.03	A
	OR		
XII	With the help of a vector diagram derive the relation between line and phase values of voltage in a star connected system.	M 4.02	A
XIII	Explain with a diagram the generation of three phase ac voltages.	M 4.01	U
	OR		
XIV	Write any seven comparisons between star and delta systems.	M 4.02	U

Scoring Indicators

Model Question Paper II FUNDAMENTALS OF ELECTRIC CIRCUITS

$\begin{gathered} \mathrm{Q} \\ \text { No } \end{gathered}$	Scoring Indicators	Split score	Sub Total	$\begin{gathered} \text { Tota } \\ 1 \\ \text { scor } \\ \text { e } \end{gathered}$
	PART A			
I. 1	Passive circuits		1	
I. 2	Resistor, Capacitor, Inductor (write any one)		1	
I. 3	Two or more branches of elements		1	
I. 4	A vector, $E=E(\cos \theta+j \sin \theta)$, where $E-$ magnitude and $\Theta-$ inclination		1	
I. 5	$V=V_{m} \operatorname{Sin} \omega t$		1	
I. 6	$Q \text { factor }=\frac{I_{C}}{I}$ Also $Q \text { factor }=\frac{X_{L}}{R}$ Q-factor- Current magnification in an RLC parallel circuit is called its Q-factor		1	9
I. 7	the reactive components of the line current becomes zero		1	
I. 8	Phase sequence is the order or sequence in which the current or voltage in different phases attain their maximum values one after the other		1	

II. 4	PHASOR DIAGRAM IMPEDANCE DIAGRAM	$\begin{aligned} & 1.5+ \\ & 1.5 \end{aligned}$	3
II. 5	$\begin{aligned} & \mathrm{A}+\mathrm{B}=6+\mathrm{j} 8+3-\mathrm{j} 4=9+\mathrm{j} 4 \\ & \text { Magnitude }= \\ & =\sqrt{9^{2}+4^{2}}=9.85 \text { units } \\ & \text { Slope } \quad=\tan ^{-1} \frac{4}{9}=23.96^{\circ} \end{aligned}$	$\begin{aligned} & 1+ \\ & 1+ \\ & 1 \end{aligned}$	3
II. 6	a) Admittance, Y is the reciprocal of impedance a) Resonance - When the reactive component of the line current becomes zero. The frequency at this condition is called resonance frequency	1.5 1.5	3
II. 7	Procedure for vector method 1.Voltage is taken as reference vector 2.Each branch current and its phase angle are determined separately 3.The resultant current is obtained by adding the branch currents vectorially	3	3
II. 8	$\begin{aligned} & V_{L}=V_{P} \\ & I_{L}=\sqrt{3} I_{P} \end{aligned}$	$\begin{aligned} & 1.5+ \\ & 1.5 \end{aligned}$	3
II. 9		$\begin{aligned} & 1.5+ \\ & 1.5 \end{aligned}$	3

	Star connection-this connection is obtained by joining together similar ends at common point. Delta connection- this connection is obtained by joining the dissimilar ends.That is the starting end of one coil is connected to the finishing end of the other coil and so on. Delta Star		
	Active power in three phase system		
II. 10	Power output per phase $=E_{p h} I_{p h} \operatorname{Cos} \emptyset$ Total power output $=3 E_{p h} I_{p h} \operatorname{Cos} \emptyset$ if the load is star connected then $\begin{aligned} & E_{p h}=\frac{E_{L}}{\sqrt{3}} \\ & I_{p h}=I_{L} \end{aligned}$ Total power or Active power $=3 \frac{E_{L}}{\sqrt{3}} I_{L} \cos \emptyset$ $=\sqrt{3} E_{L} I_{L} \cos \emptyset$ (Each main step carries 0.5 mark)	3	
	PART C		

	Convert the given circuit to a single voltage source in series with a single resistance .			
III				
	Step 1: To find $V_{\text {th }}$ or $V_{A B}$ With A and B open, the voltage sources are in subtractive series because they oppose each other. Net voltage around the circuit $=15-10=5 \mathrm{~V}$			
	Total resistance $=8+4=12 \Omega$ hence circuit current $=5 / 12 \mathrm{~A}$	2.5	7	7
	$\begin{aligned} \text { Drop across } 4 \Omega & =4 \times 5 / 12 \\ & =5 / 3 \mathrm{~V} \end{aligned}$			
	Thevenin's voltage, $\begin{aligned} \mathrm{V}_{\mathrm{AB}} & =(\text { voltage across } 4 \Omega)+10 \mathrm{~V} \\ & =5 / 3+10=35 / 3 \mathrm{~V} \end{aligned}$			

	Step 2: To find $\mathbf{R}_{\text {th }}$ or \mathbf{R}_{AB} Replace all voltage sources with ' shorts ' as shown $\text { Rth }=8 \times 4 /(8+4)=32 / 12=8 / 3 \Omega$	2.5	
	Step 3 : Thevenin's Equivalent Circuit	2	
IV	By Norton's theorem, find the current flowing through 5 ohm		7

Battery current

$$
I=\frac{20}{20 / 3}=3 \mathrm{~A}
$$

Hence by current division rule

$$
I_{s c}=I_{N}=I * \frac{4}{4+8}=3 * \frac{4}{4+8}=1 A
$$

Step 3 .
To find RN
Voltage source is shorted

$$
\begin{aligned}
R_{N} & =((4 / / 4)+8) / / 10 \\
& =\left(\frac{4 \times 4}{4+4}+8\right) / / 10 \\
& =10 / / 10=\frac{10}{2}=5 \Omega
\end{aligned}
$$

	b)Reciprocity theorem In any linear bilateral network, if a source of emf, E in any branch produces a current I in any other branch, then the same emf E acting in the second branch would produce the same current I in the first branch	3.5		
	Resonance frequency in RLC series circuit- is defined as the frequency at which electrical resonance happens.	2		
VII	At resonance the net reactance $X=0$. $\begin{aligned} & X_{L}-X_{c}=0 \\ & X_{L}=X_{c} \end{aligned}$ $\begin{aligned} & 2 \pi f_{r} L=\frac{1}{2 \pi f_{r} C} \\ & f_{r}=\frac{1}{2 \pi \sqrt{L C}} \end{aligned}$	5	7	7
	Derive the equation of active power in an R-C series circuit			
VIII	$\begin{gathered} \text { if } v=V_{m} \sin \omega t \\ i=I_{m} \sin \omega t+\phi \\ \text { Power } p=v i \\ p=V_{m} \sin \omega t I_{m} \sin (\omega t+\phi) \\ =V_{m} I_{m}\left[\frac{1}{2}\{\cos (\omega t-\omega t-\phi)-\cos (\omega t+\omega t+\phi)\}\right] \\ =\frac{V_{m} I_{m}}{2}[\cos (-\phi)-\cos 2 \omega t+\phi] \\ =\frac{V_{m} I_{m}}{2}[\cos \phi-\cos 2 \omega t+\phi] \end{gathered}$	7	7	7

	Total X components $=0.5^{*} \operatorname{Cos} 0^{\circ}+0.853^{*} \operatorname{Cos} 64.77^{\circ}=0.8634$ Total Y components $=0.5^{*} \operatorname{Sin} 0^{\circ}+0.853^{*} \operatorname{Sin} 64.77^{\circ}=0.772$ Total Current, $\begin{aligned} & I=\sqrt{X^{2}+Y^{2}} \\ & =1.158 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1+ \\ & 1+ \\ & 1 \end{aligned}$		
X	Draw the vector diagram of the given circuit .		7	7

	We know, $\begin{aligned} R_{12} & =\frac{R_{1}+R_{2}}{}+\frac{R_{1} R_{2}}{R_{3}}{ }^{2}\end{aligned}$ $\begin{gathered} R_{23}=R_{2}+R_{3}+\frac{R_{2} R_{3}}{R_{1}}=\frac{20+30+\frac{20 \times 30}{10}=110 \Omega}{R_{31}=R_{1}+R_{3}+\frac{R_{1} R_{3}}{R_{2}}=10+30+\frac{10 \times 30}{20}=55 \Omega} \end{gathered}$ (Figure -1 mark Calculations- 2 marks each)	$\begin{aligned} & 1+ \\ & 2+ \\ & 2+ \\ & 2 \end{aligned}$	7	7
XII	Let $E_{R}=E_{Y}=E_{B}=E_{p h}$ are the phase values of voltage Let $E_{R Y}=E_{L}$ be the line value of voltage By parallelogram law method, $\mathrm{E}_{\mathrm{RY}}=$ $\begin{aligned} & \sqrt{\left(\square_{\square h}^{2}+\square_{\square h}^{2}+2 * \square_{\square h}^{2} * \square \square \square 60\right)} \\ \text { ie }, \mathrm{E}_{\mathrm{L}}= & \sqrt{3 \square_{\square h}^{2}}=\sqrt{3} \square_{\square h} \end{aligned}$ (Diagram-1 mark, For each main step-1 mark)	7	7	7

	A 2-pole alternator has three distinct windings displaced by 120° apart from one another. When the N -pole of the rotor comes under the influence of the conductors at $0^{\circ}, 120^{\circ}$ and 240°, the emf's induced are maximum. The emf's are equal in magnitude and of same frequency	2.5		
XIII	$\begin{aligned} & e_{a 1}=E_{m} \sin \omega t \\ & e_{b 1}=E_{m} \sin \left(\omega t-120^{0}\right) \\ & e_{c 1}=E_{m} \sin \left(\omega t-240^{0}\right) \end{aligned}$	1	7	7
XIV	Comparisons between star and delta systems			

Line currents or phase currents are 120 degree apart	Line voltages or phase voltages are 120 degree apart
Active power $=\sqrt{3} V_{L} I_{L} \cos \phi$	Active power $=\sqrt{3} V_{L} I_{L} \cos \phi$
Rective power $=\sqrt{3} V_{L} I_{L} \sin \phi$	Rective power $=\sqrt{3} V_{L} I_{L} \sin \phi$
Apparent power $=\sqrt{3} V_{L} I_{L}$	Apparent power $=\sqrt{3} V_{L} I_{L}$
	(Write any 7 comparisons)

Module wise question analysis

Question No	Module				No of questions
	I	II	III	IV	
Part A (1 Mark)	3	2	2	2	9
Part B (3 Marks)	2	3	2	3	10
Part C (7 Marks)	4	2	2	4	12
Total questions	$\mathbf{9}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{9}$	$\mathbf{3 1}$
Total (Marks)=123	$\mathbf{3 7}$	$\mathbf{2 5}$	$\mathbf{2 2}$	$\mathbf{3 9}$	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understand	Apply	
Part A (1 Mark)	3	6	0	9
Part B (3 Marks)	3	6	1	10
Part C (7 Marks)	0	6	6	12
Total questions	$\mathbf{6}$	$\mathbf{1 8}$	$\mathbf{7}$	$\mathbf{3 1}$
Total (Marks)=123	$\mathbf{1 2}$	$\mathbf{6 6}$	$\mathbf{4 5}$	$\mathbf{1 2 3}$

Prepared By :

Jayaram S
Head Of Department
Electrical \& Electronics Engineering Govt. Polytechnic College Attingal

Scrutinised By :

Binu B. R
Head Of Department Govt. Polytechnic College Pala

