Model Question Paper I

FUNDAMENTALS OF ELECTRIC CIRCUITS

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark (9*1=9 marks)

1	Name any one dc network theorem	M 1.02	R
2	Two branches meeting at a point in a circuit is called	M 1.01	U
3	Write the format of polar form	M 2.01	U
4	Match the following types of load and their power factors: Resistive - lagging Capacitive-in phase Inductive – leading	M 2.01	U
5	Write the equation of power in a pure resistive circuit	M 2.01	U
6	Any one method of solving parallel circuit is	M3.02	R
7	Power factor in a parallel circuit at resonance is	M 3.04	U
8	Write the relation between line and phase values of voltage in star system	M 4.02	U
9	Equation of three phase ac power is	M 4.04	U

PART B

II. Answer any **eight** questions from the following, each question carries 3 marks.

(8 * 3=24 marks)

1	State reciprocity theorem.	M 1.02	R
2	Write the procedure to Nortonize a given circuit.	M 1.03	U
3	Two vectors A=20+j30,B= -10-j15.find A-B and express the result in polar form	M2.01	А
4	Draw the vector and impedance diagrams of R-L series circuit	M 2.02	А
5	Determine the capacitance of the capacitor of a circuit consisting of 110V, 40W lamp in series with a capacitor. Supply voltage is 230V,50 Hz.	M 2.03	А
6	Define the terms in a parallel circuit (1).Resonance (2).Q factor	M 3.04	R
7	Draw the vector diagram of a parallel circuit with one branch consisting of a resistor of 14Ω and a reactance of 20Ω . A second branch consists of a resistor of 25Ω . A potential difference of 100V,50Hz is applied across the combination.	M 3.02	A
8	Write any three advantages of three phase systems	M 4.01	R
9	Obtain the relation between line and phase values of voltage in a star connected system.	M 4.02	U
10	Write the equations of various three phase powers .	M4.04	U

PART C

Answer ALL questions. Each question carries 7 marks.

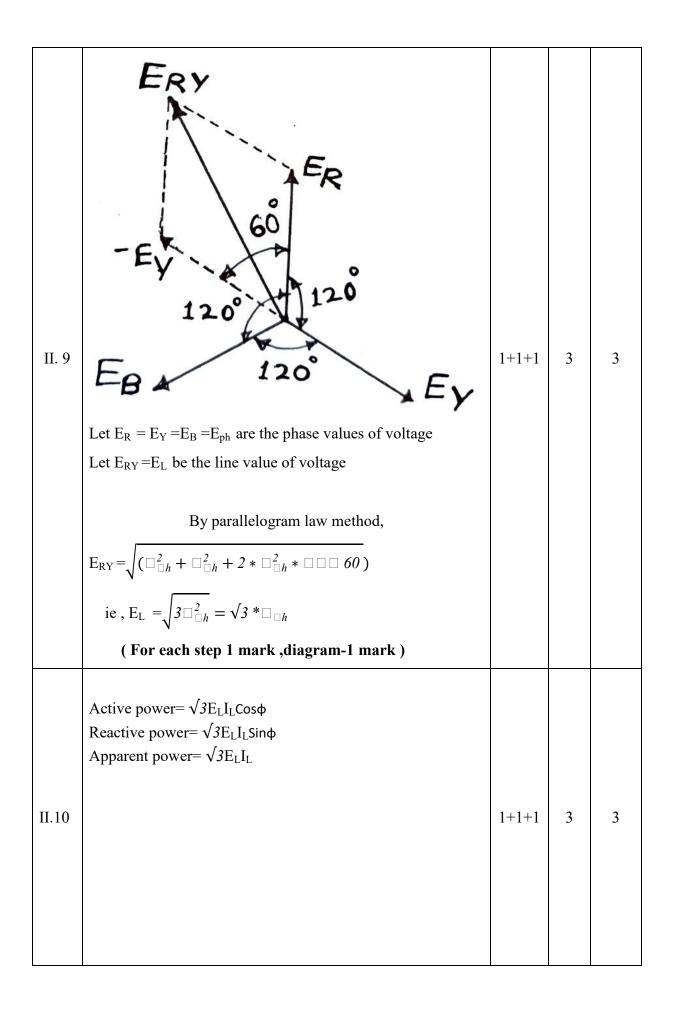
(6*7=42 marks)

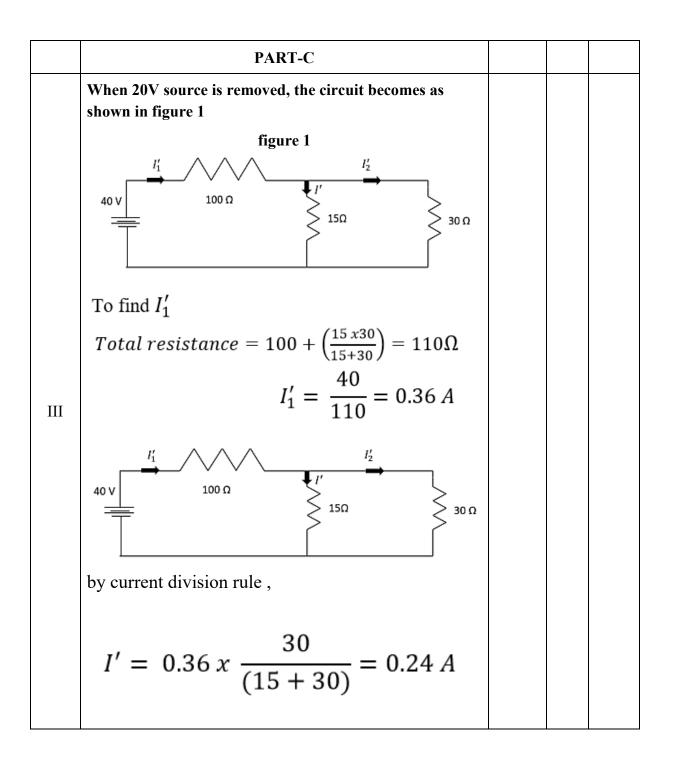
III	By using superposition theorem find the current through 15Ω resistor. 100Ω $1 30\Omega$ $40V$ 15Ω $20V$	M 1.04	A
	OR		
IV	Obtain Norton's equivalent circuit of the given circuit. $ \begin{array}{c} $	M 1.04	A
V	Write the procedure to thevenize a given circuit.	M 1.03	U
	OR		
VI	State and explain the theorems (a)Maximum power transfer theorem (b) Superposition theorem.	M 1.02	U
VII	A circuit consists of 10 Ω resistance and 8 Ω inductive reactance are in series and takes a current of 6 ampere. Determine (i) voltage across resistance and inductance (ii) total supply voltage (iii)power factor of the circuit.	M 2.03	А
	OR		

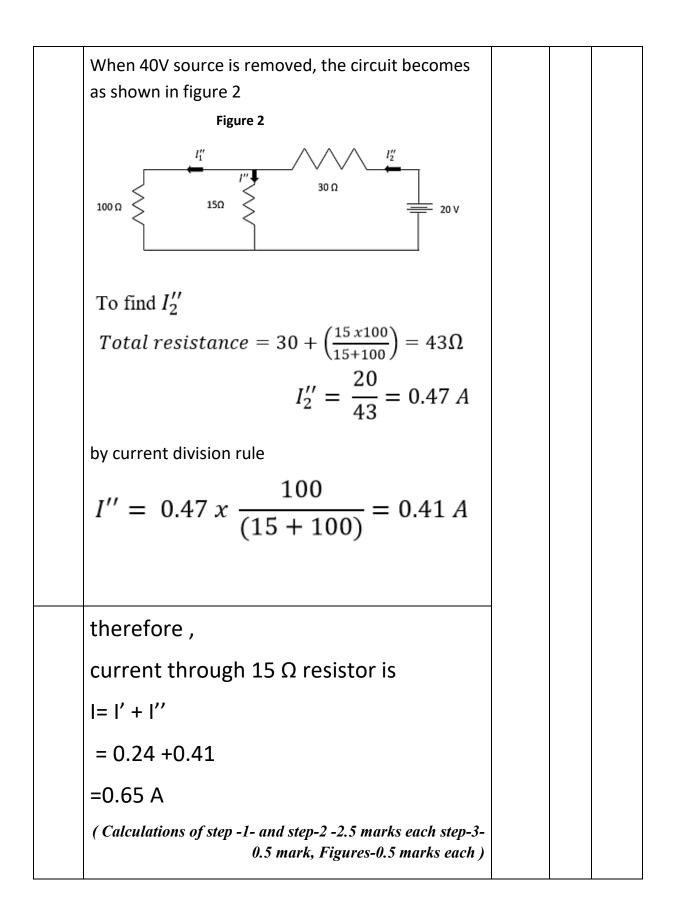
VIII	Perform the following operations and find magnitude and slope in each case.(a)A+B(b)A-B (c) AB, where A=20+j15 and B= 30 -j4	M 2.01	А
IX	Derive the equation of active power in an R-L series circuit	M 2.02	U
	OR		
X	Draw the vector and impedance diagrams of R-C series circuit. Also write the equation of power factor.	M2.03	U
XI	Two impedances $Z1=(10+j15)$ ohm and $Z2=(6-j8)$ ohm are connected in parallel. If the total current supplied is 15A,determine the current and power taken by each branch. Use admittance method.	M 3.03	А
	OR		
XII	A coil of resistance 14 Ω and reactance 20 Ω is shunted by a non – resistance of 25 Ω and a p.d of 100V at 50Hz is impressed across the combination.Find (i)the current in each branch(ii)total current	M 3.03	А
XIII	A balanced star connected load of 8+j6 ohm per phase is connected to a 3- phase,230V.Find (i)Line current (ii)Power (iii)Reactive power	M 4.02	А
	OR		
XIV	With the help of a vector diagram derive the relation between line and phase values of current in a delta connected system.	M 4.02	А

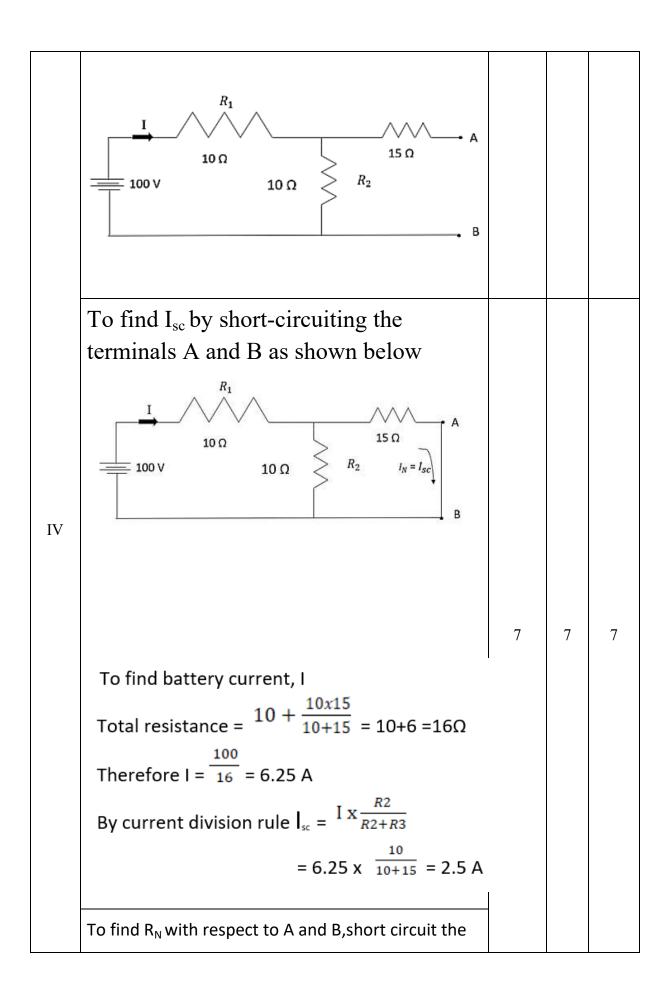
Scoring Indicators

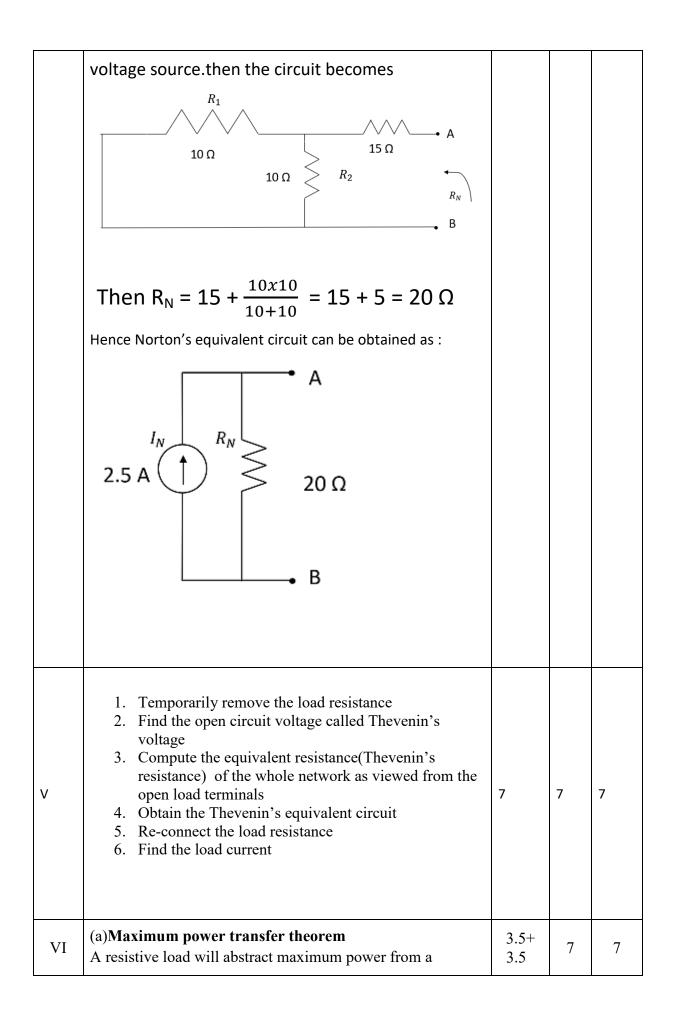
Model Question Paper I

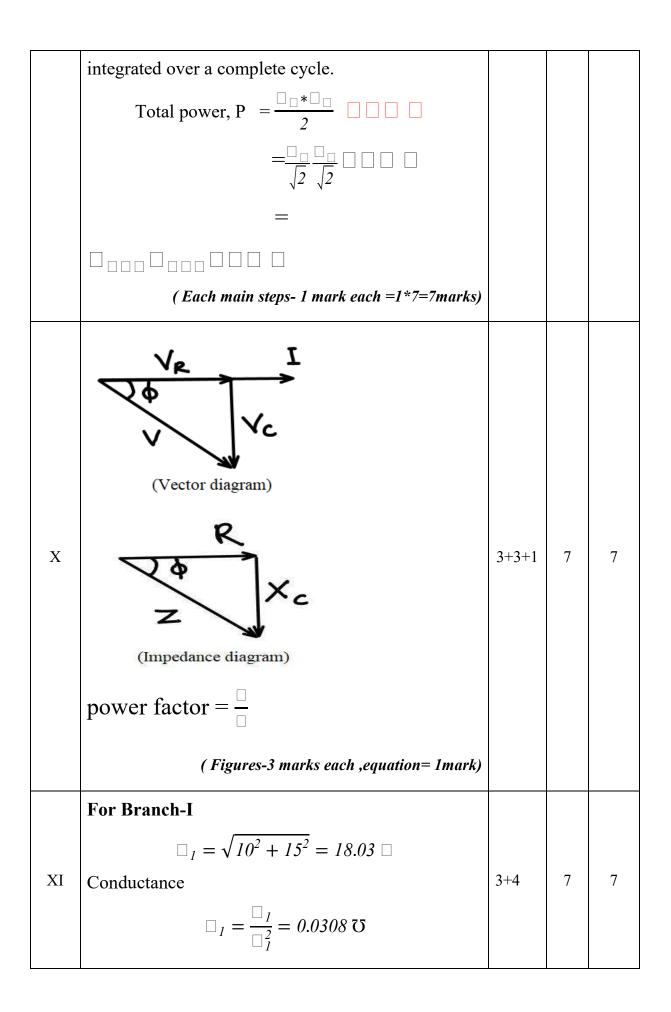

FUNDAMENTALS OF ELECTRIC CIRCUITS


Q No	Scoring Indicators	Split score	Sub Tot al	Total Score
	PART A			
	Superposition theorem			
	Maximum power transfer theorem			
	Thevenin's theorem			
I. 1	Norton's theorem		1	1
	Reciprocity theorem			
	(Write any one theorem)			
I. 2	Junction or Node		1	1
I. 3	A vector, $E = E < \Theta$, where E-magnitude and Θ -inclination		1	1
	Resistance-in phase			
I. 4	Capacitive-leading		1	1
1. 7	Inductance-lagging		1	1
I. 5	P=VI watts		1	1
	Vector method			
	Admittance method			
I. 6	j-method		1	1
	(Write any one method)			
	unity			
I. 7	(Write any one)		1	1
I. 8	$V_L = \sqrt{3} V_{ph}$		1	1
I. 9	$P = \sqrt{3} V_L I_L Cos\phi$		1	1


	PART-B			
II. 1	Reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first.		3	3
II. 2	 Remove the resistance (if any) across the two given terminals and put a short- circuit across them Compute the short circuit current Remove all voltage and current sources Find Norton's resistance Join the current source in parallel across the Norton's resistance Complete the equivalent circuit 	6 *0.5m ark	3	3
II. 3	A = 20+j30, B= -10-j15, A-B =? A-B=20+j 30 + 10 + j 15= 30 + j45 Magnitude= $\sqrt{30^2 + 45^2} = 54.08$ $\theta = \tan^{-1} \frac{45}{30}$ =56.309 ⁰ Therefore in polar form , A-B=54.08< 56.309 ⁰ (Calculation of each quantity carries 1marks)	3 *1mar k	3	3


II. 4	$V \downarrow \downarrow$	2 *1.5 marks	3	3
II. 5	Voltage across the capacitor $V_C = \sqrt{230^2 - 110^2} = 202 \text{ V}$ $I = \frac{P}{V} = \frac{40}{110} = 0.3636 \text{ A}$ $X_C = \frac{V_C}{I} = \frac{202}{0.3636} = 555.55 \Omega$ But $X_C = \frac{1}{2\pi f C}$ C= 5.73 µF	0.5+0.5+0.5+1+0.5	3	3
II. 6	(1) Resonance – When the reactive component of the line current becomes zero. The frequency at this condition is called resonance frequency (2) Q-factor - Current magnification in an RLC parallel circuit is called its Q-factor $Q \ factor = \frac{I_C}{I}$ Also $Q \ factor = \frac{X_L}{R}$	1.5+ 1.5	3	3


II.7	For branch-1 $Z_{1} = \sqrt{14^{2} + 20^{2}} = 24.41 \ \Omega$ $I_{1} = \frac{V}{Z_{1}} = \frac{100}{24.41} = 4.097 \ A$ $\phi_{1} = \cos^{-1}\frac{R}{Z_{1}} = \cos^{-1}\frac{14}{24.41} = 55^{0} \ (lag)$			
	For branch-2 $I_2 = \frac{V}{Z_2} = \frac{100}{25} = 4 A$ $\phi_2 = \cos^{-1} \frac{R}{Z_2} = \cos^{-1} \frac{25}{25} = 0$	1+1.5 +0.5	3	3
	L L L L L L L L L L L L L L			
II. 8	 1.Total power delivered is constant 2.Output of 3 phase motor is 1.5 times the output of single phase motor of same size 3.Three phase motors are self starting 4.Rotating magnetic field can be setup 5.More reliable (Write any three) 	1+1+1	3	3



	network when the load resistance is equal to the resistance of the network as viewed from the output terminals with all energy sources(emfs) removed with their internal resistances			
	(b) Superposition theorem- In a network of linear resistances containing more than one source of emf, the current which flows at any point is the sum of all the currents which would flow at that point if each emf where considered separately and all the other emfs replaced by their internal resistances			
	Given , R=10 Ω , X _L = 8 Ω , I=6A			
	(i) V _R =IR=6x10=60V			
	$V_{L} = IX_{L} = 6x8 = 48V$			
	(ii) $Z = \sqrt{R^2 + XL^2} = 12.8 \Omega$			
VII	Therefore supply voltage,	3+4	7	7
	V= IZ =6x12.8 =76.8 V			
	(iii) p.f = $\frac{R}{Z}$ =0.781			
	(Equations- 3 marks, Calculations- 4 marks)			
	(a) $A+B = 20+j15+30-j4$			
	= 50 + 11j			
VIII	Magnitude = $\sqrt{50^2 + 11^2} = 51.2$	3+4	7	7
	$Slope = \tan^{-1}\frac{11}{50} = 12.4^{0}$			
	(b)			

$$\begin{array}{c|c} A-B=20+j15-30+j4\\ =-10+j19\\ Magnitude = \sqrt{(-10^2) + 19^2} = 21.47\\ Slope = \tan^{-1}\frac{-19}{10} = -62.2^0\\ (c)\\ AB=(20+j15)*(30-j4)\\ =600-80j+450j+60\\ =660+j370\\ Magnitude = \sqrt{660^2 + 370^2} = 756.64\\ Slope = \tan^{-1}\frac{370}{660} = 29.27^0\\ (Equations- 3 marks, Calculations- 4 marks)\\ Instantaneous power,\\ P=v*i\\ = \Box_{0}\Box \Box \Box = *\Box_{0}\Box \Box (\Box - \Box)\\ = \frac{\Box_{0}\Box \Box}{2}(\Box \Box (\Box - \Box) + \Box) = \Box \Box (\Box - \Box) + \Box = 1))\\ = \frac{\Box_{0}\Box \Box}{2}(\Box \Box (\Box - \Box) + \Box) = \Box \Box (\Box - \Box) + \Box = 1)\\ Since the second term is a double frequency\\ component and its value becomes zero when \\ \end{array}$$

susceptance

$$\Box_{I} = \frac{-\Box_{\Box I}}{\Box_{I}^{2}} = -0.046 \, \mho \, (\Box \Box \Box \Box \Box \Box \Box)$$

For Branch-II

$$\Box_2 = \sqrt{6^2 + 8^2} = 10 \ \Box$$

Conductance

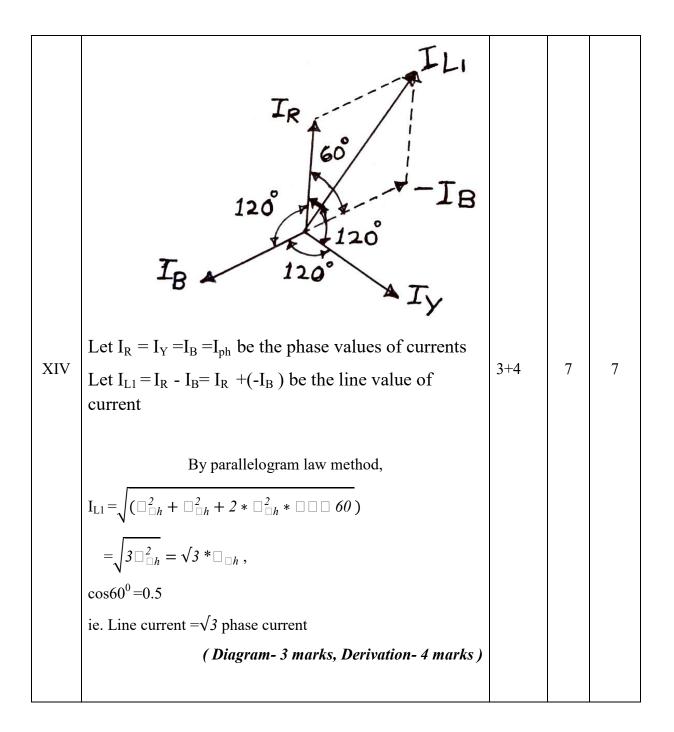
$$\Box_2 = \frac{\Box_2}{\Box_2^2} = 0.06 \, \mho$$

susceptance

$$\Box_2 = \frac{\Box_{\Box 2}}{\Box_2^2} = 0.08 \, \mho$$

Total conductance, $\Box = \Box_1 + \Box_2 = 0.0908$ \circlearrowright

Total susceptance, $\Box = \Box_1 + \Box_2$


$$= -0.046 + 0.08 = 0.0339$$
 T

Admittance of the circuit $Y = \sqrt{\square^2 + \square^2} = 0.0969 \ \Im$ Supply Voltage, $V = \square = \square = 15$ $\square_1 = \square = 0.0969 = 154.79 \square$ $\square_1 = \square = 0.0969 = 154.79 \square$ $\square_2 = \square = 0.0969 = 154.79 \square$ $\square_2 = \square = 0.0969 = 154.79 \square$

For branch-1 (i) $Z_1 = \sqrt{14^2 + 20^2} = 24.41 \,\Omega$ $I_1 = \frac{V}{Z_1} = \frac{100}{24.41} = 4.096A$ $\phi_1 = \frac{R}{Z_1} = 55^{\circ}$ (lag) For branch-2 $I_2 = \frac{V}{Z_2} = \frac{100}{25} = 4A$ $\phi_2 = \frac{R}{Z^2} = \frac{R}{R} = (1) = 0^{\circ}$ XII 3+4 7 7 (ii) either resolving the branch currents method or parallelogram law method can be applied. Here, resolving of branch currents method is used. Total X-components = $4\cos^0 + 4.096\cos^{50} = 6.346$ Total Y-components = $4\sin^0 - 4.096\sin^5 5^0 = -3.35$ Therefore total current, $I = \sqrt{\Box^2 + \Box^2} = 7.176 A$ (Equations- 3 marks, Calculations- 4 marks)

(i)

$$E_{ph} = \frac{230}{\sqrt{3}} = 132.8 \vee Z_{ph} = \sqrt{R_{ph}^2 + X_{ph}^2} = \sqrt{8^2 + 6^2} = 10 \Omega U_{ph} = \frac{E_{ph}}{Z_{ph}} = 13.28 A$$
Line current, $I_L = I_{ph} = 13.28 A$
cos $\emptyset = \frac{R_{ph}}{Z_{ph}} = 0.8 \log U_{3+4}$
(ii)
Power = $\sqrt{3} E_L I_L \cos \phi = 4232 W$
(iii)
 $\phi = \cos^{-1} 0.8$
Reactive Power = $\sqrt{3} E_L I_L Sin \phi = 3174 VAr$
(Equations- 3 marks, Calculations- 4 marks)

Module wise question analysis

Question No		No of questions			
	Ι	II	III	IV	
Part A (1 Mark)	2	3	2	2	9
Part B (3 Marks)	2	3	2	3	10
Part C (7 Marks)	4	4	2	2	12
Total questions	8	10	6	7	31
Total (Marks)=123	36	40	22	25	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understanding	Apply	
Part A (1 Mark)	2	7	0	9
Part B (3 Marks)	3	3	4	10
Part C (7 Marks)	0	4	8	12
Total questions	5	14	12	31
Total (Marks)=123	11	44	68	

Prepared By :

Jayaram S Head Of Department Electrical & Electronics Engineering Govt. Polytechnic College Attingal

Scrutinised By :

Own

Binu B. R Head Of department Electrical & Electronics Engineering Govt. Polytechnic College, Pala

Model Question Paper II

FUNDAMENTALS OF ELECTRIC CIRCUITS

Time: 3 Hour

Max.Marks: 75

PART A

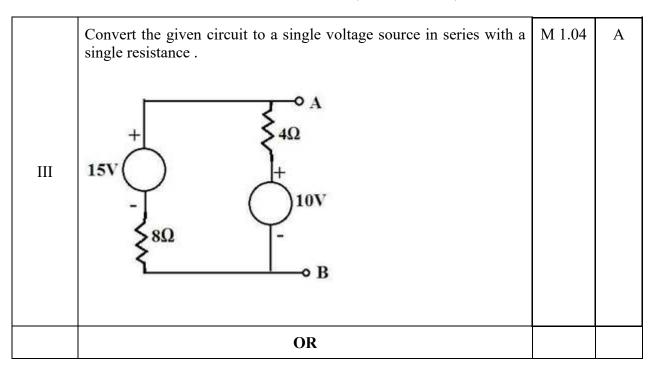
I. Answer **all** questions in one word or one sentence. Each question carries 1 mark.

1	A circuit with no source of emf is called	M 1.01	U
2	Write any passive parameters in an electric circuit.		R
3	A node in a circuit is the meeting of	M 1.01	U
4	Write the format of trigonometric form		U
5	Equation of alternating voltage is	M 2.02	R
6	Q factor of an RLC parallel circuit is	M 3.04	U
7	Resonance in an RLC parallel circuit occurs when	M 3.04	U
8	Define phase sequence in a three phase system	M 4.01	R
9	Write the relation between line and phase values of current in delta connected system	M 4.02	U

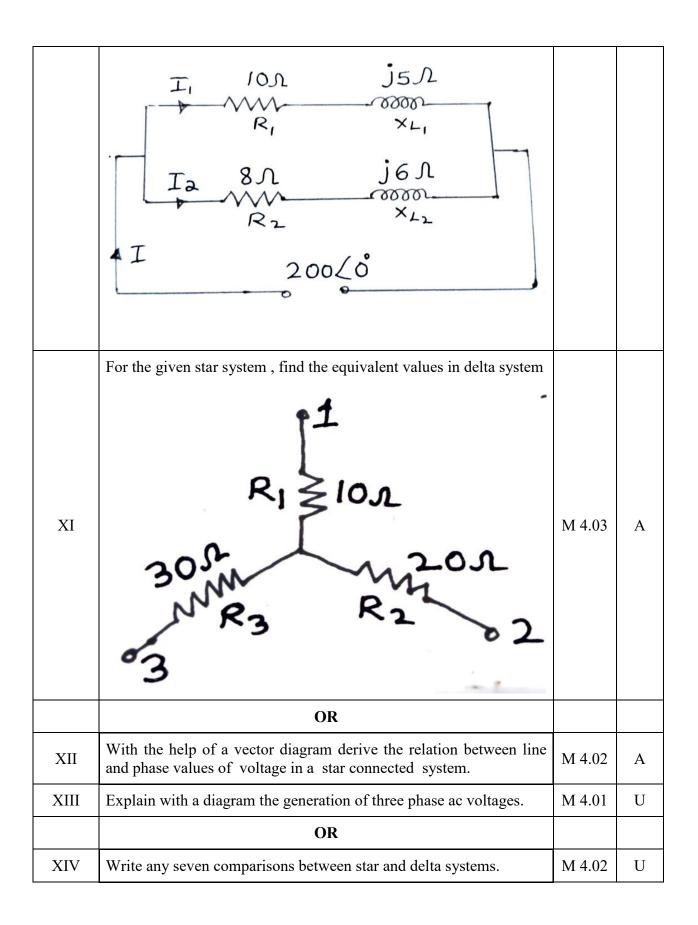
PART B

II. Answer any **eight** questions from the following, each question carries 3 marks.

	(0	5-24 man	K5)
1	Define the terms (i) active circuit (ii) loop (iii) linear network	M 1.01	R
2	State superposition theorem.	M 1.02	R
3	Derive the equation of power in a pure capacitive circuit.	M 2.01	U
4	Draw the vector and impedance diagrams of an R-L-C series circuit for XL greater than XC	M 2.02	U
5	Find the magnitude and slope of two vectors for A+B, where	M 2.01	А


(8 * 3 = 24 marks)

	A=6+j8, B=3-j4.		
6	Define the terms in a parallel circuit (a)Admittance (b)Resonance.	M 3.02 M 3.04	R
7	Write the procedure of vector method in parallel circuits .	M 3.02	U
8	Compare the line and phase quantities in a delta system.	M 4.02	U
9	How star and delta connections are formed in three phase system	M 4.02	U
10	Derive the equation of active power in three phase systems.	M 4.04	U

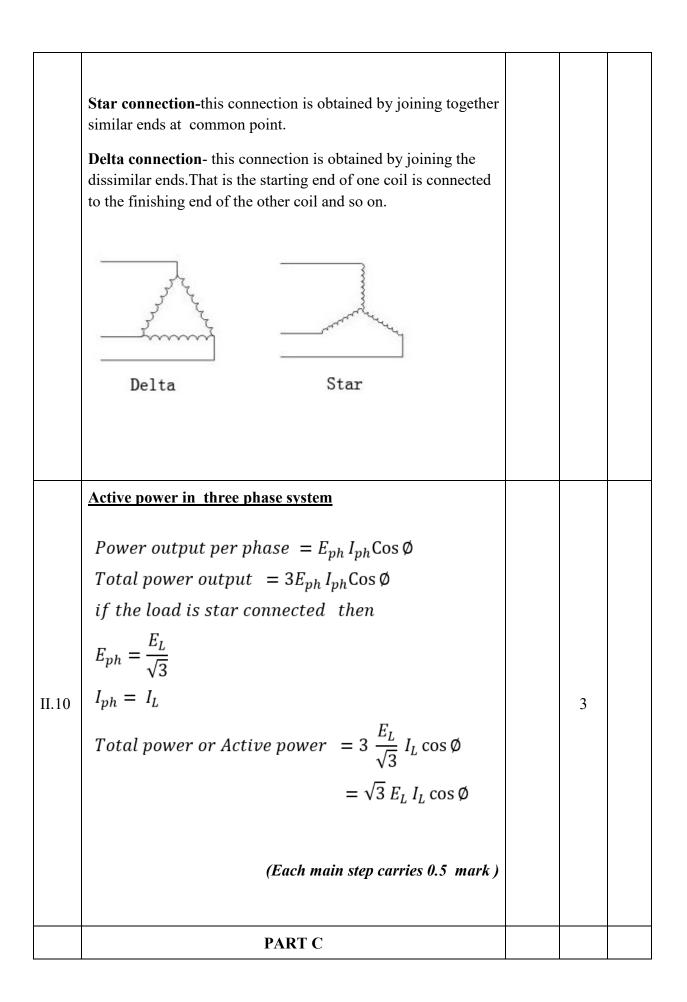

PART C

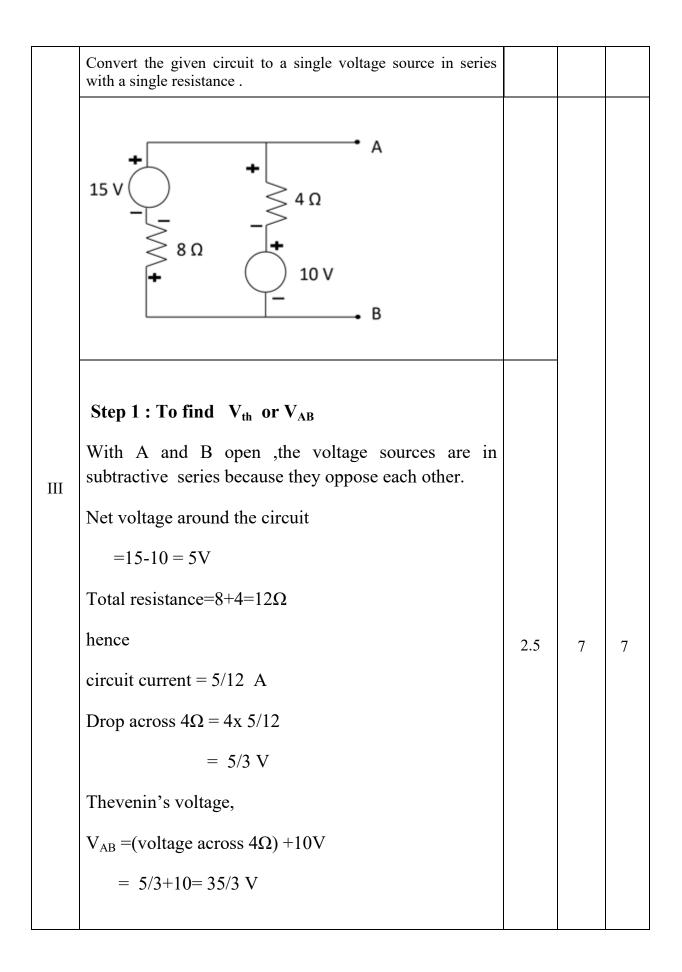
Answer ALL questions. Each question carries 7 marks.

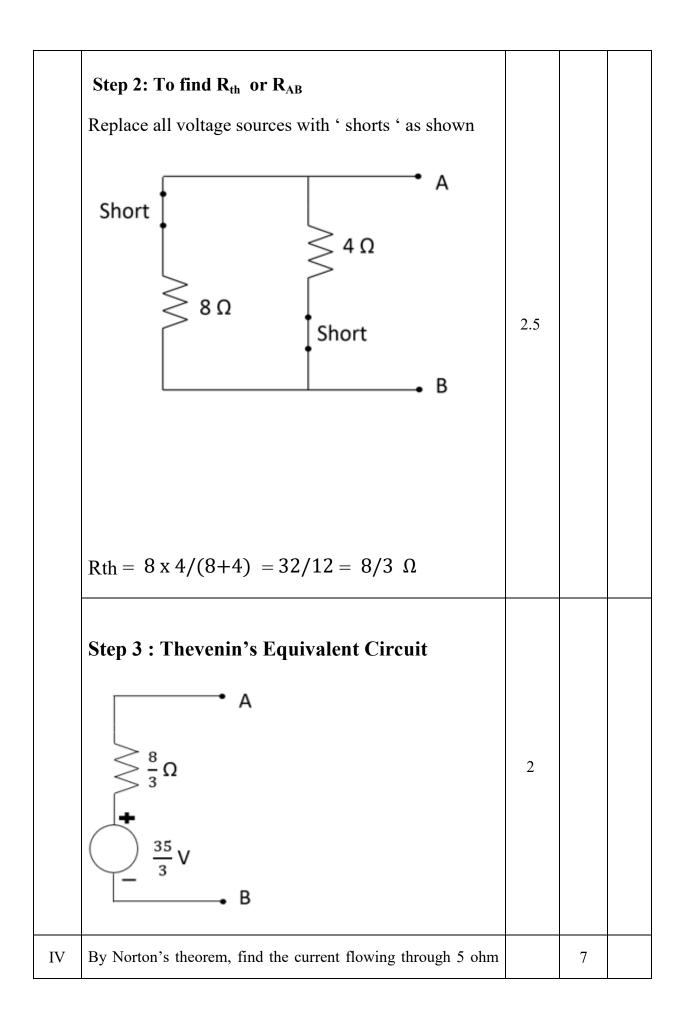
(6*7=42 r	narks)
-----------	--------

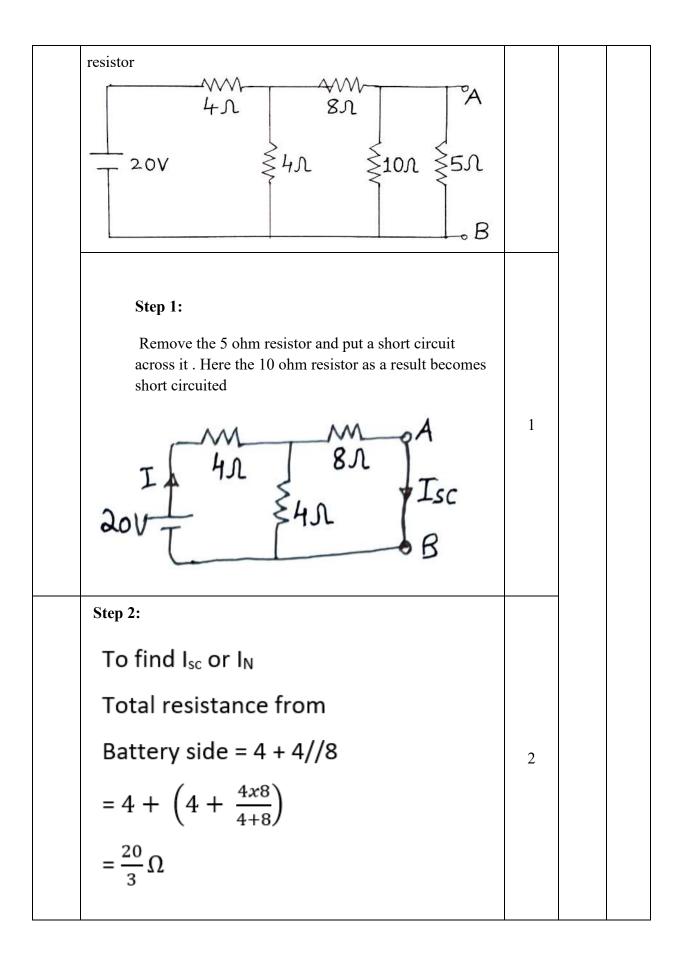
IV	By Norton's theorem, find the current flowing through 5 ohm resistor. $ \begin{array}{c c} & & & & & & & & & & & & & & & & & & & $	M 1.04	А
V	Write the procedure to Nortanize a given circuit.	M 1.03	U
	OR		
VI	State and explain the theorems (a)Maximum power transfer theorem (b) reciprocity theorem	M 1.02	U
VII	Define and derive resonance frequency in an RLC series circuit .	M 2.04	U
	OR		
VIII	Derive the equation of active power in an R-C series circuit	M 2.02	U
IX	A circuit consists of two branches connected in parallel across a 100V, 50Hz supply. Branch-1-a resistor of 200 Ω , Branch-2- a 50 Ω resistor in series with a 30 μ F capacitor. Calculate the branch currents and total current.	M 3.03	А
	OR		
Х	Draw the vector diagram of the given circuit .	M 3.03	А

Scoring Indicators


Model Question Paper II

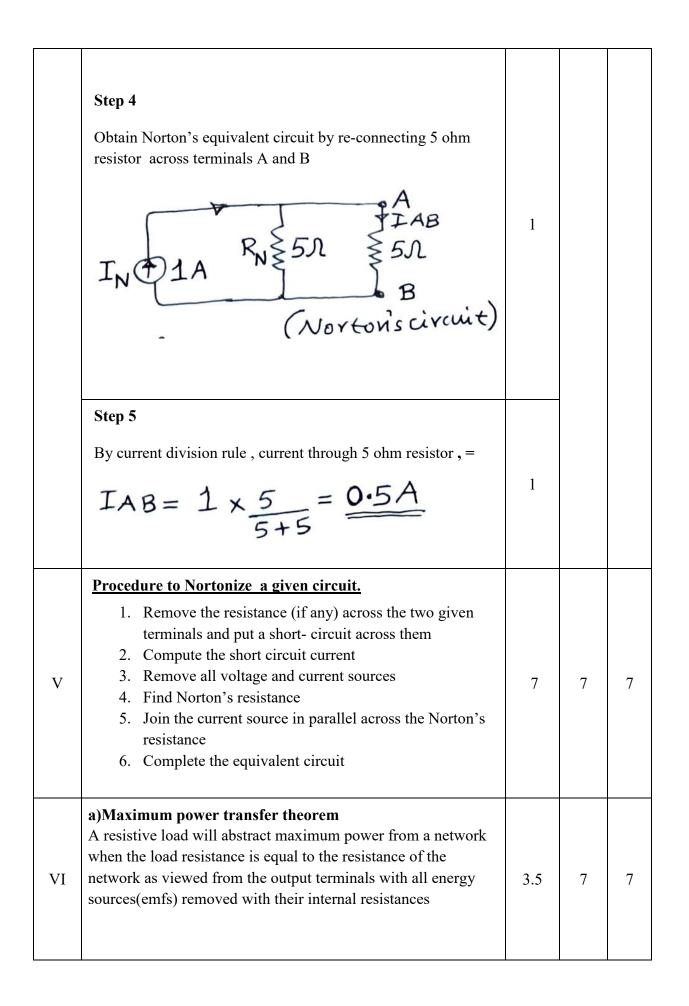

FUNDAMENTALS OF ELECTRIC CIRCUITS


Q No	Scoring Indicators	Split score	Sub Total	Tota 1 scor e
	PART A			
I. 1	Passive circuits		1	
I. 2	Resistor, Capacitor, Inductor <i>(write any one)</i>		1	
I. 3	Two or more branches of elements		1	
I. 4	A vector, $E = E(\cos\Theta + j \sin\Theta)$, where E-magnitude and Θ -inclination		1	
I. 5	$V = V_m Sin\omega t$		1	
I. 6	$Q \ factor = \frac{I_C}{I}$ Also $Q \ factor = \frac{X_L}{R}$		1	9
	Q-factor- Current magnification in an RLC parallel circuit is called its Q-factor			
I. 7	the reactive components of the line current becomes zero		1	
I. 8	Phase sequence is the order or sequence in which the current or voltage in different phases attain their maximum values one after the other		1	

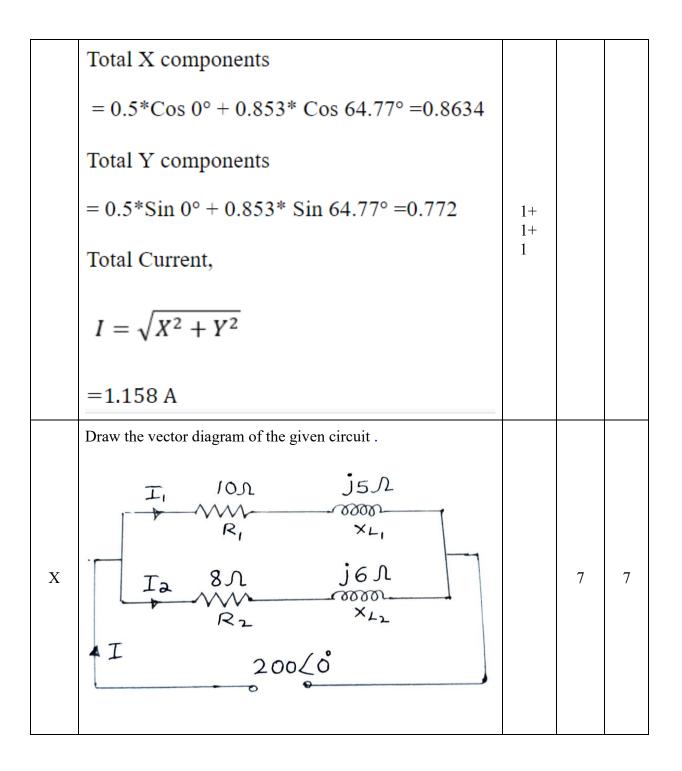

I. 9	$I_L = \sqrt{3} I_P$		1	
	PART B			
	(i) Active circuit -is one which contains one or more than one source of emf along with passive elements	1		
II. 1	(ii) Loop -is a closed path formed starting from a node passing through a set of nodes and returning to the starting node without passing the same node more than once.	1	3	
	(iii) Linear network- is a circuit whose parameters are constant with time ,also they do not change with voltage or current.	1		
II. 2	Superposition Theorem In a network of linear resistances containing more than one source of emf, the current which flows at any point is the sum of all the currents which would flow at that point if each emf where considered separately and all the other emfs replaced by their internal resistances		3	
II. 3	$\begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \displaystyle \operatorname{Pure\ capacitive\ circuit.} \\ \displaystyle \\ \displaystyle \begin{array}{l} \displaystyle \operatorname{Instantaneous\ power} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle p = \nu i \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle p = V_m \sin \omega t \ I_m \sin (\omega t + 90) \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle = V_m \ I_m \sin \omega t \ \cos \omega t \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle = \frac{V_m I_m}{2} \sin 2 \omega t \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \operatorname{Since\ the\ above\ equation\ consists\ of\ a\ double\ frequency\ component,\ the\ value\ will\ be\ zero\ if\ we\ integrate\ the\ equation\ for\ the\ whole\ cycle\ .} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} $ \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array} \displaystyle \end{array} \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} = \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \end{array} \bigg) \end{array} \end{array} \bigg \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \end{array} \end{array} \end{array} = \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \bigg \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \end{array} \bigg \\ \displaystyle \begin{array} \end{split} \end{array} \\ \displaystyle \begin{array} \end{split} \end{array} \end{array} \\ \displaystyle \begin{array} \end{split} \end{array} \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \displaystyle \end{array} \end{array} \bigg \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \displaystyle \end{array} \end{array} \bigg \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \displaystyle \displaystyle \end{array} \bigg \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \displaystyle \displaystyle \end{array} \bigg \\ \displaystyle \begin{array} \end{split} = \displaystyle \end{array} \bigg \bigg \\ \displaystyle \begin{array} \end{split} = \displaystyle		3	

II. 4	$V_{\Phi} \downarrow V_{L} V_{L} V_{C} \downarrow X_{L} > X_{C} \downarrow X_{L} \downarrow X_{L} - X_{C} \downarrow X_{L} - $	1.5+ 1.5	3	
II. 5	A+B = 6 + j8 + 3 - j4 = 9 + j4 Magnitude = $\sqrt{9^2 + 4^2}$ = 9.85 units Slope = $\tan^{-1}\frac{4}{9}$ = 23.96°	1+ 1+ 1	3	
	a) Admittance, Y is the reciprocal of impedance	1.5		
II. 6	a) Resonance – When the reactive component of the line current becomes zero. The frequency at this condition is called resonance frequency	1.5	3	
II. 7	Procedure for vector method Voltage is taken as reference vector Each branch current and its phase angle are determined separately The resultant current is obtained by adding the branch currents vectorially 	3	3	
II. 8	$V_L = V_P$ $I_L = \sqrt{3} I_P$	1.5 + 1.5	3	
II.9		1.5 + 1.5	3	

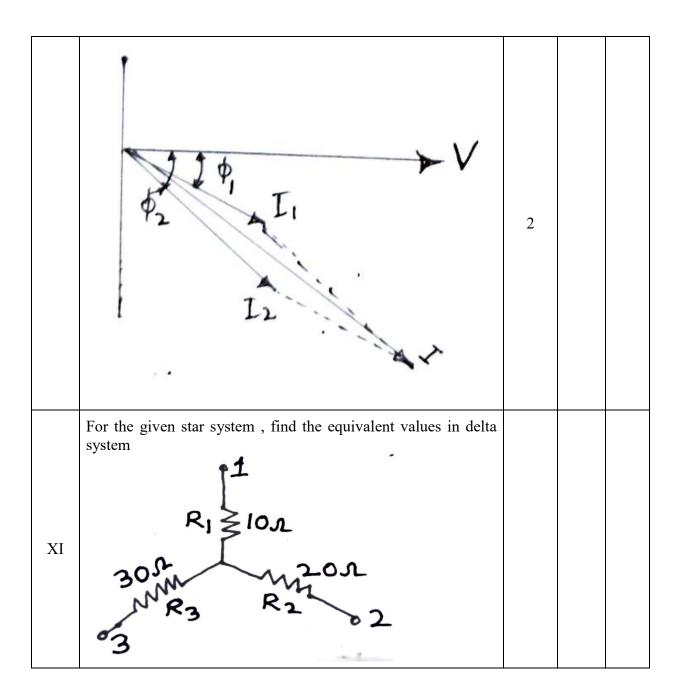
Battery current

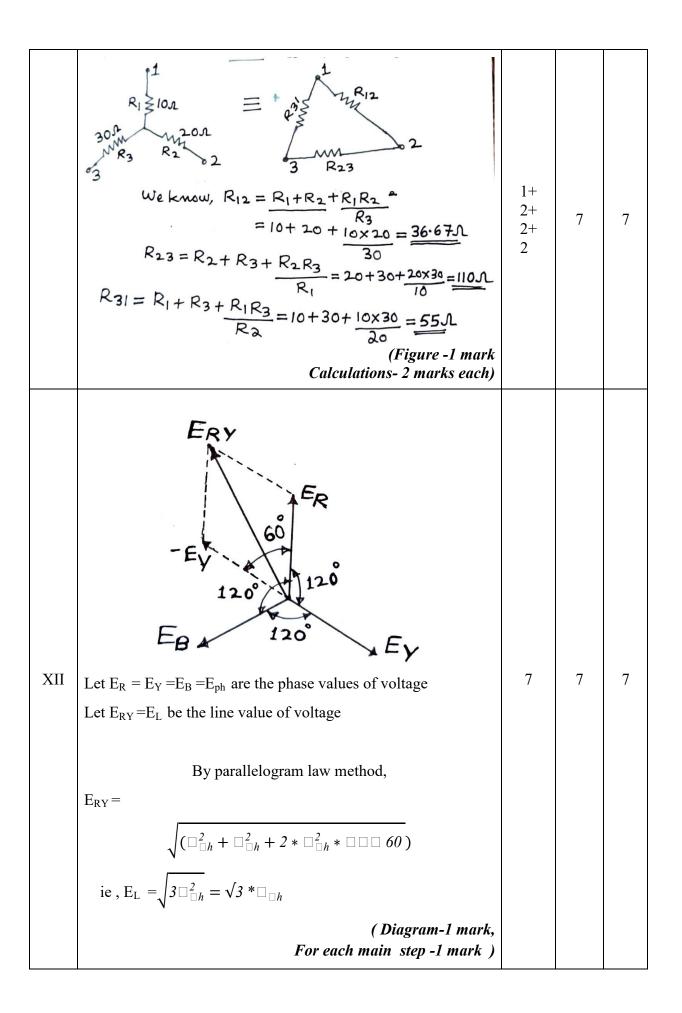

$$I = \frac{20}{20/3} = 3 A$$
Hence by current division rule

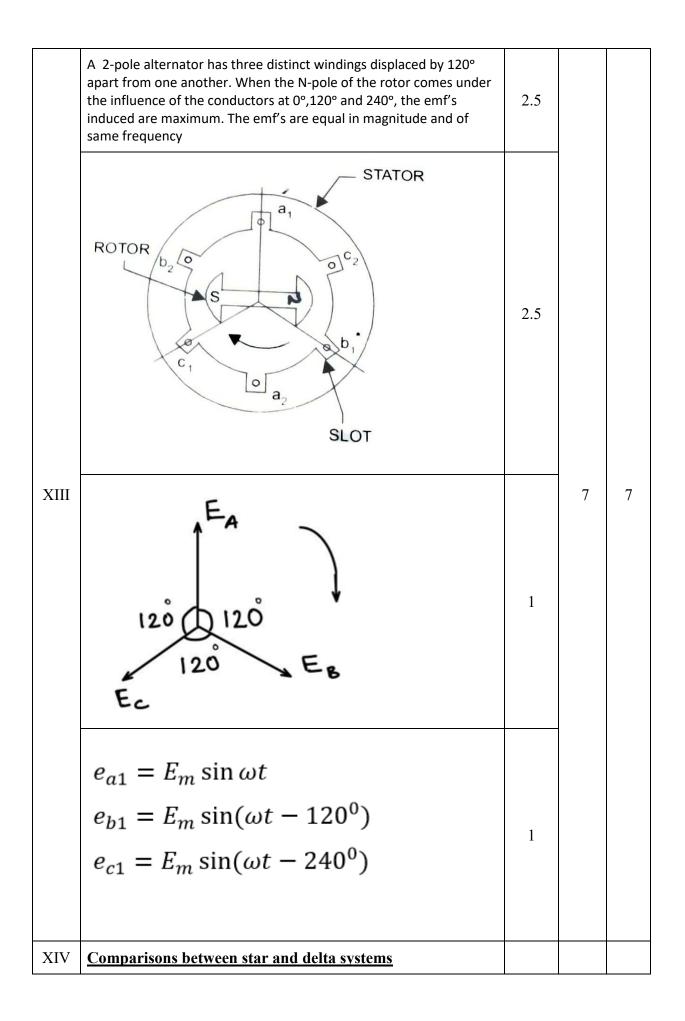
$$I_{sc} = I_N = I * \frac{4}{4+8} = 3 * \frac{4}{4+8} = 1A$$
Step3.
To find RN
Voltage source is shorted

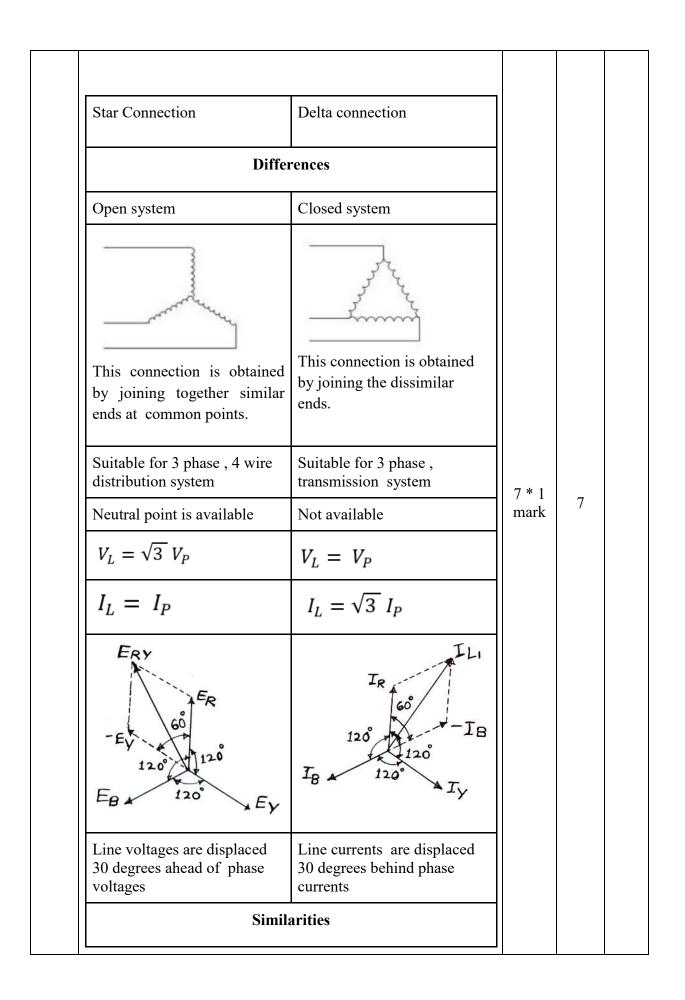

$$Voltage source is shorted$$

$$R_N = \frac{(4/(4)+8)}{10} = \frac{10}{2} = 5 \Lambda$$


$$R_N = \frac{10}{10} = \frac{10}{2} = 5 \Lambda$$




	b)Reciprocity theorem In any linear bilateral network, if a source of emf, E in any branch produces a current I in any other branch, then the same emf E acting in the second branch would produce the same current I in the first branch	3.5		
	Resonance frequency in RLC series circuit- is defined as the frequency at which electrical resonance happens.	2		
VII	At resonance the net reactance X = 0. $X_L - X_c = 0$ $X_L = X_c$ $2\pi f_r L = \frac{1}{2\pi f_r C}$ $f_r = \frac{1}{2\pi \sqrt{LC}}$	5	7	7
	Derive the equation of active power in an R-C series circuit			
VIII	$if \ v = V_m \sin \omega t$ $i = I_m \sin \omega t + \phi$ $Power \ p = vi$ $p = V_m \sin \omega t \ I_m \sin(\omega t + \phi)$ $= V_m I_m \left[\frac{1}{2} \{ \cos(\omega t - \omega t - \phi) - \cos(\omega t + \omega t + \phi) \} \right]$ $= \frac{V_m I_m}{2} [\cos(-\phi) - \cos 2\omega t + \phi]$ $= \frac{V_m I_m}{2} [\cos \phi - \cos 2\omega t + \phi]$	7	7	7



For Branch 1 $Z_1 = \sqrt{R_1^2 + X_{L1}^2}$ $=\sqrt{10^2+5^2}=11.18\,\Omega$ 1 + $I_1 = \frac{V}{Z_1} = \frac{200}{11.18} = 17.9 \, A = 18 \, A$ 0.5 +Phase angle = $\phi_1 = \cos^{-1}\left(\frac{R_1}{Z_1}\right)$ $=\cos^{-1}\left(\frac{10}{11,18}\right)=26.56^{\circ}$ For branch 2 $Z_2 = \sqrt{R_2^2 + X_{L2}^2}$ $=\sqrt{8^2+6^2}=10\Omega$ 1 + $I_2 = \frac{V}{Z_2} = \frac{200}{10} = 20 A$ 0.5 +1 Phase angle = $\phi_2 = \cos^{-1}\left(\frac{R_2}{Z_2}\right)$ $=\cos^{-1}\left(\frac{8}{10}\right)=36.87^{0}$

Line currents or phase currents are 120 degre		Line voltages or phase voltages are 120 degree apart		
Active power = $\sqrt{3} V_L$	$I_L \cos \phi$	Active power = $\sqrt{3} V_L I_L \cos \phi$		
Rective power = $\sqrt{3} V_L$	$J_L \sin \phi = H$	Rective power = $\sqrt{3} V_L I_L \sin \phi$		
Apparent power = γ	$\sqrt{3} V_L I_L$	Apparent power = $\sqrt{3} V_L I_L$		
		(Write any 7 comparisons)		

Module wise question analysis

Question No			No of questions		
	Ι	II	III	IV	
Part A (1 Mark)	3	2	2	2	9
Part B (3 Marks)	2	3	2	3	10
Part C (7 Marks)	4	2	2	4	12
Total questions	9	7	6	9	31
Total (Marks)=123	37	25	22	39	

Cognitive level wise question analysis

Question No		No of questions		
	Remember	Understand	Apply	
Part A (1 Mark)	3	6	0	9
Part B (3 Marks)	3	6	1	10
Part C (7 Marks)	0	6	6	12
Total questions	6	18	7	31
Total (Marks)=123	12	66	45	123

Prepared By :

Jayaram S Head Of Department Electrical & Electronics Engineering Govt. Polytechnic College Attingal

Scrutinised By :

Jom

Binu B. R Head Of Department Govt. Polytechnic College Pala