Model Question Paper I

ANALOG \& DIGITAL CIRCUITS

Time: 3 Hour
Max.Marks: 75

PART A

I. Answer all questions in one word or one sentence. Each question carries 1 mark.

1	Define class 'C' operation of power amplifier.	M 1.01	R
2	Define Barkhausen's criterion for oscillations	M 1.02	R
3	Define CMRR of an op-amp.	M 2.01	R
4	List the applications of op amp circuits.	M 2.03	R
5	Define De Morgan's theorem	M 3.03	R
6	Write the Boolean expression for the output Y A	M 3.03	A
7	Illustrate the truth table of XOR gate figure below.	Y	M 3.02
8	Show the circuit symbol of SR flip flop	U	
9	List any two examples of sequential logic circuits	R	

PART B

II. Answer any eight questions from the following, each question carries 3 marks.

1	List the classifications of power amplifiers based on the period of conduction.	$M 1.01$	R
2	Explain positive feedback and negative feedback	M1.02	U

3	List advantages of crystal oscillators.	M 1.03	R
4	Compare astable and bistable multi vibrators	M 1.04	U
5	Explain non inverting amplifiers using op amp	M 2.02	U
6	How does an op amp work as a comparator?	M 2.04	R
7	List characteristics of an ideal op-amp.	M 2.01	R
8	Explain a typical op-amp stage with the help of its block diagram	M 2.01	U
9	Convert the hex number (F8E6.39) 16 to decimal number.	M 3.01	A
10	List out different modes of operations of shift registers	M 4.03	R

PART C

Answer ALL questions. Each question carries 7 marks.

III	Describe the working principle of RC phase shift oscillator with a neat diagram	M1.03	R
	OR		
IV	Explain the operation of astable multivibrator with a neat diagram	M1.04	U
V	Describe the role of op amp in the working of half wave precision rectifiers.	M2.03	R
	OR		
VI	Obtain an expression for output voltage of an inverting amplifier	M2.03	U
VII	Minimize the following boolean function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,1$, $2,5,7,8,9,10,13,15)$	M3.03	A
	OR		
VIII	Explain 1's complement addition and subtraction using suitable example	M3. 03	U
IX	Simplify the following Boolean expression using K map $\mathrm{Y}=\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \mathrm{C}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \overline{\mathrm{C}}+\overline{\mathrm{A}} \cdot \overline{\mathrm{~B}} \cdot \mathrm{C}+\mathrm{A} \cdot \mathrm{~B} \cdot \mathrm{C}$	M3.03	A
	OR		
X	Explain 2's complement addition and subtraction using suitable example	M3.03	U

XI	Differentiate between SR and JK flip flops	M4.03	U
	OR		
XII	With neat diagram, explain the operation of R-2R ladder type DAC	M4.03	U
XIII	Explain the implementation of full adder using half adder	M4.03	U
	OR		
XIV	Construct a mod 8 asynchronous counter. Also draw its logic, timing diagram and truth table.	M4.03	A

Scoring Indicators

Model Question Paper I

Analog \& Digital Circuits

II. 5	Diagram Explanation In Non Inverting Operational Amplifiers, the input is fed to the non-inverting terminal and the output is in phase with the input. $\text { Closed loop gain }=1+\frac{\square_{\square}}{\square_{1}}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	3	3
II. 6	Diagram Explanation The Op-amp comparator compares one analogue voltage level with another analogue voltage level, or some preset reference voltage, Vref and produces an output signal based on this voltage comparison. In other words, the op-amp voltage comparator compares the magnitudes of two voltage inputs and determines which is the largest of the two. Non-Inverting Comparator Circuit	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	3	3
II. 7	Answer any three points - Infinite open-loop gain $G=v_{\text {out }} / \mathrm{v}$.... - Infinite input impedance $\mathrm{R}_{\text {in }}$, - Zero input offset voltage.	1 1 1	3	3

	- Infinite output voltage range. - Infinite bandwidth with zero phase shift and infinite slew rate. - Zero output impedance R.			
II. 8		3	3	3
II. 9	Steps Final answer $\begin{aligned} & (\text { F8E6.39 })_{16}=\left(15 \times 16^{3}\right)+\left(8 \times 16^{2}\right)+\left(14 \times 16^{1}\right)+\left(6 \times 16^{0}\right)+ \\ & \left(3 \times 16^{-1}\right)+\left(9 \times 16^{-2}\right)=(63718.22265625)_{10} \end{aligned}$	2	3	3
II. 10	Answer any three(SISO,SIPO,PISO,PIPO) Serial-in to Parallel-out (SIPO) - the register is loaded with serial data, one bit at a time, with the stored data being available at the output in parallel form. Serial-in to Serial-out (SISO) - the data is shifted serially "IN" and "OUT" of the register, one bit at a time in either a left or right direction under clock control. Parallel-in to Serial-out (PISO) - the parallel data is loaded into the register simultaneously and is shifted out of the register serially one bit at a time under clock control. Parallel-in to Parallel-out (PIPO) - the parallel data is loaded simultaneously into the register, and transferred	1 1 1	3	3

	together to their respective outputs by the same clock pulse.			
	PART C			
III	Explanation The basic RC Oscillator which is also known as a Phase-shift Oscillator, produces a sine wave output signal using regenerative feedback obtained from the resistor-capacitor (RC) ladder network. This regenerative feedback from the RC network is due to the ability of the capacitor to store an electric charge, (similar to the LC tank circuit). This resistor-capacitor feedback network can be connected as shown above to produce a leading phase shift (phase advance network) or interchanged to produce a lagging phase shift (phase retard network) the outcome is still the same as the sine wave oscillations only occur at the frequency at which the overall phase-shift is 360 degree. By varying one or more of the resistors or capacitors in the phase-shift network, the frequency can be varied and generally this is done by keeping the resistors the same and using a 3 -ganged variable capacitor because capacitive reactance (XC) changes with a change in frequency as capacitors are frequency-sensitive components. However, it may be required to re-adjust the voltage gain of the amplifier for the new frequency. Diagram	4 3	7	7
IV	Diagram	4	7	7

\begin{tabular}{|c|c|c|c|c|}
\hline \& It is implemented by the coupling capacitors that instantly transfer voltage changes because the voltage across a capacitor cannot suddenly change. In each state, one transistor is switched on and the other is switched off. Accordingly, one fully charged capacitor discharges (reverse charges) slowly thus converting the time into an exponentially changing voltage. At the same time, the other empty capacitor quickly charges thus restoring its charge (the first capacitor acts as a time-setting capacitor and the second prepares to play this role in the next state). The circuit operation is based on the fact that the forward-biased base-emitter junction of the switchedon bipolar transistor can provide a path for the capacitor restoration. \& 3 \& \& \\
\hline V \& \begin{tabular}{l}
Diagram \\
HALF WAVE RECTIFIER \\
sacennersommacom \\
The precision rectifier is another rectifier that converts AC to DC, but in a precision rectifier we use an op-amp to compensate for the voltage drop across the diode, that is why we are not losing the 0.6 V or 0.7 V voltage drop across the diode, also the circuit can be constructed to have some gain at the output of the amplifier as well. \\
In this case, when the input is greater than zero, D1 is off, and D2 is on, so the output is zero because the other end of
\end{tabular} \& 4

3 \& 7 \& 7

\hline
\end{tabular}

VII	$F(A, B, C, D)=\sum m(0,1,2,5,2,8,9,10,13,15)$ $F(A, B-C, D)=B D+\bar{C} D+\bar{B} \bar{D}$ K map Steps Final result (other variations in answer may accept)	$\begin{aligned} & 4 \\ & 2 \\ & 1 \end{aligned}$	7	7
VIII	Addition (Any Example) Add $1101+(-1001)$ 1. First, find the 1 's complement of the negative number 1001. So, for finding 1's complement, change all 0 to 1 and all 1 to 0 . The 1's complement of the number 1001 is 0110 . 2. Now, add both the numbers, i.e., 1101 and 0110 ; $1101+0110=10011$ 3. By adding both numbers, we get the end-around carry 1. We add this end around carry to the LSB of 0011. $0011+1=0100$ Subtraction (Any Example) Subtracting 10101-00111 1. Take 1's complement of subtrahend 00111, which comes out 11000 . 2. Take sum them, $10101+11000=101101$. 3. In the above result, we get the carry bit 1 , so add this to the LSB of a given result, i.e., $01101+1=01110$,	3.5 3.5	7	7
IX	K map	4 2 1	7	7

	and a positive number.			
XI	Diagram Explanation The SR flip-flop, also known as a $S R$ Latch, can be considered as one of the most basic sequential logic circuits possible. This simple flip-flop is basically a one-bit memory bistable device that has two inputs, one which will "SET" the device (meaning the output $=$ " 1 "), and is labelled \mathbf{S} and one which will "RESET" the device (meaning the output $=$ " 0 "), labelled \mathbf{R}. The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level " 1 ". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1 ", "logic 0", "no change" and "toggle".	4 3	7	7
XII	Diagram As its name implies, the "ladder" description comes from the ladder-like configuration of the resistors used within the network. A R-2R resistive ladder network provides a simple means of converting digital voltage	4	7	7

	signals into an equivalent analogue output. Input voltages are applied to the ladder network at various points along its length and the more input points the better the resolution of the R-2R ladder. The output signal as a result of all these input voltage points is taken from the end of the ladder which is used to drive the inverting input of an operational amplifier	3		
XIII	Diagram Equations	4 3	7	7
XIV	Truth table Circuit diagram logic diagram Timing diagram	2 3 1 1	7	7

Module wise question analysis

	I	II	III	IV	
Part A (1 Mark)	2	2	3	2	9
Part B (3 Marks)	4	4	1	1	10
Part C (7 Marks)	2	2	4	4	12
Total questions	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{3 1}$
Total (Marks)-123	$\mathbf{2 8}$	$\mathbf{2 8}$	$\mathbf{3 4}$	$\mathbf{3 3}$	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understan d	Apply	
Part A (1 Mark)	7	1	1	9
Part B (3 Marks)	5	4	1	10
Part C (7 Marks)	2	7	3	12
Total questions	$\mathbf{1 4}$	$\mathbf{1 2}$	$\mathbf{5}$	$\mathbf{3 1}$
Total (Marks)=123	$\mathbf{3 6}$	$\mathbf{6 2}$	$\mathbf{2 5}$	

Prepared By :	Scrutinised By :
Nikhil VT	
Lecturer	
Govt Polytechnic College, Kannur	Shithin P V
Lecturer	
Govt. Polytechnic College,	
Kannur	

Model Question Paper II

ANALOG \& DIGITAL CIRCUITS

Time: 3 Hour
Max.Marks: 75

PART A

I. Answer all questions in one word or one sentence. Each question carries 1 mark.

1	Define the term feedback in an amplifier.	M 1.02	R
2	List the conditions for sustained oscillations	M 1.02	R
3	Define voltage gain of an op-amp.	M 2.01	R
4	List the applications of op amp circuits?	M 2.03	R
5	List two laws associated with Boolean algebra	M 3.03	R
6	Differentiate SOP and POS representation of Boolean expression.	M 3.04	U
7	Convert the decimal number (17) 10 to its binary equivalent number	M 3.01	A
8	Explain the term combinational circuit	M 4.01	R
9	List any two applications of flip flops	M 4.02	R

PART B

II. Answer any eight questions from the following, each question carries 3 marks.

1	Explain a complementary symmetry push pull amplifier?	M 1.01	R
2	Compare positive and negative feedback	M 1.02	U
3	List the classifications of multi vibrator circuits?	M 1.04	R
4	Compare class A and class B power amplifiers	M 1.01	U
5	Explain full wave precision rectifier with circuit diagram	M 2.04	U
6	Describe working principle of summing amplifier	M 2.03	R
7	List the characteristics of ideal op amp	M 2.01	R
8	Compare positive and negative level comparator with circuit diagrams	M 2.04	U
9	Convert the binary number (11011.011)2 to decimal	M 3.01	A
10	Describe the working of multiplexer circuit with an example	M 4.01	R

PART C

Answer ALL questions. Each question carries 7 marks.

Scoring Indicators

Model Question Paper II

ANALOG \& DIGITAL CIRCUITS

Q No	Scoring Indicators	Split score	Sub Tota 1	$\begin{gathered} \hline \text { Tota } \\ 1 \\ \text { scor } \\ \text { e } \\ \hline \end{gathered}$
	PART A			
I. 1	The process by which some part or fraction of output is combined with the input is known as feedback.	1	1	1
I. 2	$\begin{aligned} & \|\beta A\|=1 \\ & \angle \beta A=2 \pi n, \quad n \in 0,1,2, \ldots \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	1	1
I. 3	Voltage gain is defined as the ratio of the output voltage to the input voltage in dB	1	1	1
I. 4	Write any two application(summing amplifier, inverting amplifier, comparator etc)	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	1	1
I. 5	Commutative $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ Associative $\mathrm{A}+(\mathrm{B}+\mathrm{C})=(\mathrm{A}+\mathrm{B})+\mathrm{C}$	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	1	1
I. 6	Sum of Products (SOP): It is formed by adding (OR operation) the product terms. These product terms are also called 'min-terms'. Product of Sums (POS): It is formed by multiplying(AND operation) the sum terms. These sum terms are also called 'max-terms'.	0.5 0.5	1	1
I. 7	$(17)_{10}=(10001)_{2}$	1	1	1
I. 8	Combinatorial circuit is a type of digital circuit which is implemented by Boolean circuits, where the output is a pure function of the present input only.	1	1	1
I. 9	1) Counters 2) Registers	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	1	1
	PART B			
II. 1	Diagram	2	3	3

	 (Any three points)			
II. 5	Diagram both the half cycles output is produced $\&$ in one direction only In positive half cycle Op-Amp A1 works as an inverting amplifier Op-amp A2 works as an inverting adder. In negative half cycle op-amp Alis zero. Op-amp A2 works as an inverting adder.	2 1	3	3
II. 6	Diagram Explanation	2	3	3
II. 7	- Infinite open-loop gain - Infinite input impedance R_{in},	3*1	3	3

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
- Zero input offset voltage. \\
- Infinite output voltage range. \\
- Infinite bandwidth with zero phase shift and infinite slew rate. \\
- Zero output impedance R. \\
(Answer any three)
\end{tabular} \& \& \& \\
\hline II. 8 \& \begin{tabular}{l}
Positive Voltage Comparators \\
Negative Voltage Comparators
\end{tabular} \& 1.5

1.5 \& 3 \& 3

\hline II. 9 \& | Steps |
| :--- |
| Final answer $\begin{aligned} & (11011.011)_{2}=\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)+\left(1 \times 2^{1}\right)+(1 \times \\ & \left.2^{0}\right)+\left(0 \times 2^{-1}\right)+\left(1 \times 2^{-2}\right)+\left(1 \times 2^{-3}\right)=(27.375)_{10} \end{aligned}$ | \& \[

$$
\begin{aligned}
& 2 \\
& 1
\end{aligned}
$$
\] \& 3 \& 3

\hline II. 10 \& \& 2 \& 3 \& 3

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
4x1 Multiplexer \\
\(4 \times 1\) Multiplexer has four data inputs \(I_{3}, I_{2}, I_{1} \& I_{0}\), two selection lines \(s_{1} \& s_{0}\) and one output \(Y\). The block diagram of \(4 \times 1\) Multiplexer is shown in the following figure. \\
One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines. Truth table of \(4 \times 1\) Multiplexer is shown below. \\
From Truth table, we can directly write the Boolean function for output, Y as
\[
Y=S_{1}{ }^{\prime} S_{0}{ }^{\prime} I_{0}+S_{1}{ }^{\prime} S_{0} I_{1}+S_{1} S_{0}{ }^{\prime} I_{2}+S_{1} S_{0} I_{3}
\]
\end{tabular} \& 1 \& \& \\
\hline \& PART C \& \& \& \\
\hline III \& \begin{tabular}{l}
(a) \\
In the circuits shown, the resistors R1 and R2 form the voltage divider network while the emitter resistor RE stabilizes the circuit. Further, CE (Figure a) acts as an AC bypass capacitor while the coupling capacitor CC (Figure a) is used to block DC signal propagation between the collector and the base terminals. \\
Next, the capacitors C1 and C2 form the capacitive voltage divider network in the case of Figure b. In addition, there is also a Radio Frequency Coil (RFC) in the circuits (both in Figure \(a\) and \(b\)) which offers dual advantage as it provides even the DC bias as well as frees the circuit-output from being affected by the AC signal on the power lines.
\end{tabular} \& 4

3 \& 7 \& 7

\hline
\end{tabular}

On supplying the power to the oscillator, the amplitude of the
oscillations in the circuit increases until a point is reached
wherein the nonlinearities in the amplifier reduce the loop gain
to unity.

\begin{tabular}{|c|c|c|c|c|}
\hline V \& \begin{tabular}{l}
therefore, \(\mathrm{i}=\frac{\mathrm{Vin}-\mathrm{V} 2}{\mathrm{Rin}}=\frac{\mathrm{V} 2-\mathrm{Vout}}{\mathrm{Rf}}\)
\[
\begin{gathered}
\mathrm{i}=\frac{\mathrm{Vin}}{\mathrm{Rin}}-\frac{\mathrm{V} 2}{\mathrm{Rin}}=\frac{\mathrm{V} 2}{\mathrm{Rf}}-\frac{\mathrm{Vout}}{\mathrm{Rf}} \\
\text { so, } \frac{\mathrm{Vin}}{\text { Rin }}=\mathrm{V} 2\left[\frac{1}{R i n}+\frac{1}{R f}\right]-\frac{\text { Vout }}{R f}
\end{gathered}
\] \\
and as, \(\mathrm{i}=\frac{\text { Vin }-0}{\text { Rin }}=\frac{0-\text { Vout }}{\mathrm{Rf}} \quad \frac{\mathrm{Rf}}{\text { Rin }}=\frac{0-\text { Vout }}{\text { Vin }-0}\) \\
the Closed Loop Gain (Av) is given as, \(\frac{\text { Vout }}{\text { Vin }}=-\frac{R f}{R i n}\) \\
Then, the Closed-Loop Voltage Gain of an Inverting Amplifier is given as.
\[
\operatorname{Gain}(\mathrm{Av})=\frac{\mathrm{V}_{\text {out }}}{\mathrm{V}_{\text {in }}}=-\frac{\mathrm{R}_{\mathrm{f}}}{\mathrm{R}_{\text {in }}}
\]
\[
\text { Vout }=-\frac{R f}{R \text { in }} \times V \text { in }
\]
\end{tabular} \& 3

4 \& \&

\hline VI \& | Diagram |
| :--- |
| ideal op amp will provide infinite voltage gain | \& 4

3 \& 7 \& 7

\hline
\end{tabular}

IX	$f(A, B, C, D)=\sum m(1,2,4,5,7,8,9,10,13,15)$ $f(A, B, C, D)=B D+\bar{C} D+\bar{A} B \bar{C}+A \bar{B} \bar{C}+\bar{B} C \bar{D}$ K map Steps Final result (other variations may accept)	4 2 1	7	7
X	Addition using 2's complement Initially find the 2 's complement of the given negative number. Sum up with the given positive number. If we get the endaround carry 1 then the number will be a positive number and the carry bit will be discarded and remaining bits are the final result. Any one example Subtraction using 2's complement In the first step, find the 2 's complement of the subtrahend. Add the complement number with the minuend. If we get the carry by adding both the numbers, then we discard this carry and the result is positive else take 2 's complement of the result which will be negative. Any one example	1.5 2 1.5 2	7	7
XI	As its name implies, the "ladder" description comes from the ladder-like configuration of the resistors used within the network. A $\mathrm{R}-2 \mathrm{R}$ resistive ladder network provides a simple means of converting digital voltage signals into an equivalent analogue output. Input voltages are applied to the ladder network at various	4 3	7	7

	points along its length and the more input points the better the resolution of the $\mathrm{R}-2 \mathrm{R}$ ladder. The output signal as a result of all these input voltage points is taken from the end of the ladder which is used to drive the inverting input of an operational amplifier			
XII	The SR flip-flop, also known as a $S R$ Latch, can be considered as one of the most basic sequential logic circuits possible. This simple flip-flop is basically a one-bit memory bistable device that has two inputs, one which will "SET" the device (meaning the output $=$ " 1 "), and is labelled \mathbf{S} and one which will "RESET" the device (meaning the output $=$ " 0 "), labelled \mathbf{R}. The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R are equal to logic level " 1 ". Due to this additional clocked input, a JK flip-flop has four possible input combinations, "logic 1 ", "logic 0", "no change" and "toggle".	3	7	7

\begin{tabular}{|c|c|c|c|c|}
\hline XIII \& \begin{tabular}{l}
Circuit Operation \\
At the start, the counter is cleared to 0 \\
As the counter counts up with each clock pulse, the Digital to Analog Converter (DAC) outputs a slightly higher voltage. This voltage is compared to the input voltage by the comparator. \\
If the input voltage is greater than the DAC output, the comparator's output will be high and the counter will continue counting normally. \\
Eventually, though, the DAC output will exceed the input voltage, causing the comparator's output to go low. This will be the end of conversion and counter output is the ADC output.
\end{tabular} \& 4

3 \& 7 \& 7

\hline XIV \& \& 3.5 \& 7 \& 7

\hline
\end{tabular}

Module wise question analysis

Question No	Module				No of questions
	I	II	III	IV	
Part A (1 Mark)	2	2	3	2	9
Part B (3 Marks)	4	4	1	1	10
Part C (7 Marks)	2	2	4	4	12
Total questions	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{3 1}$
Total (Marks) $=\mathbf{1 2 3}$	$\mathbf{2 8}$	$\mathbf{2 8}$	$\mathbf{3 4}$	$\mathbf{3 3}$	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understan \mathbf{d}	Apply	
Part A (1 Mark)	7	1	1	9
Part B (3 Marks)	5	4	1	10
Part C (7 Marks)	2	7	3	12
Total questions	$\mathbf{1 4}$	$\mathbf{1 2}$	$\mathbf{5}$	$\mathbf{3 1}$
Total (Marks)=123	$\mathbf{3 6}$	$\mathbf{6 2}$	$\mathbf{2 5}$	

Prepared By:	Scrutinised By:
Rejith R.	Shithin PV
Lecturer	Lecturer
Govt. Polytechnic College Kannur	

