Model Question Paper I

ANALOG & DIGITAL CIRCUITS

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark.

1	Define class 'C' operation of power amplifier.	M1.01	R
2	Define Barkhausen's criterion for oscillations	M1.02	R
3	Define CMRR of an op-amp.	M2.01	R
4	List the applications of op amp circuits.	M2.03	R
5	Define De Morgan's theorem	M3.03	R
6	Identify the two gates represented by 1 and 2 in the figure below. Write the Boolean expression for the output Y A = 1 B = 1 C = 2 C = 2	M3.03	А
7	Illustrate the truth table of XOR gate	M3.02	U
8	Show the circuit symbol of SR flip flop	M4.02	R
9	List any two examples of sequential logic circuits	M4.03	R

PART B

II. Answer any **eight** questions from the following, each question carries 3 marks.

1	List the classifications of power amplifiers based on the period of conduction.	M1.01	R
2	Explain positive feedback and negative feedback	M1.02	U

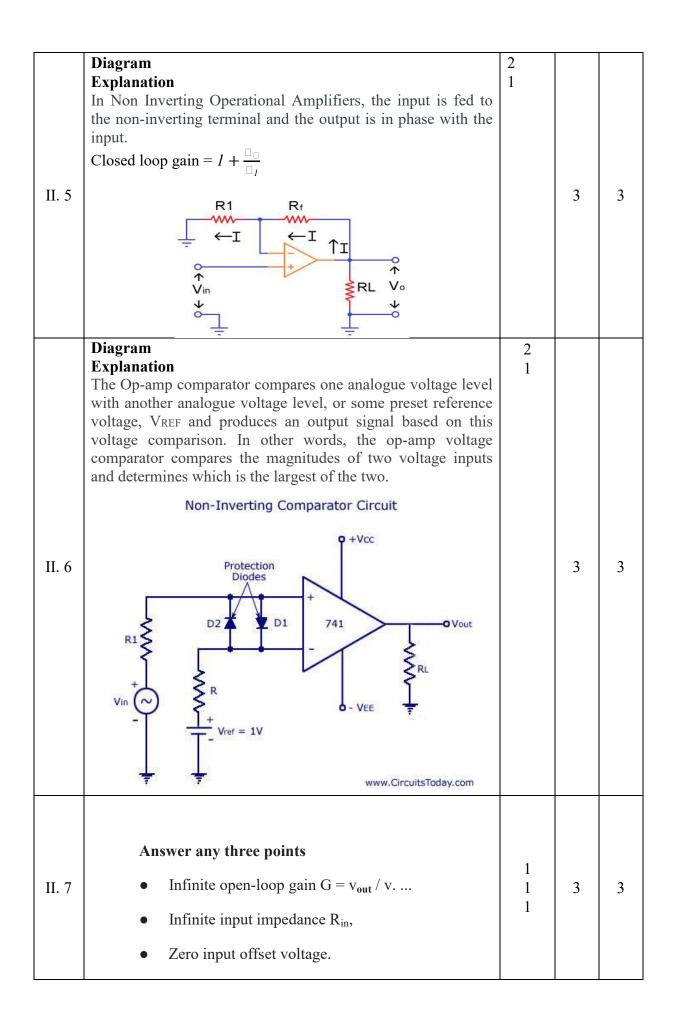
3	List advantages of crystal oscillators.	M1.03	R		
4	4 Compare astable and bistable multi vibrators				
5	Explain non inverting amplifiers using op amp	M2.02	U		
6	How does an op amp work as a comparator?	M2.04	R		
7	List characteristics of an ideal op-amp.	M2.01	R		
8	Explain a typical op-amp stage with the help of its block diagram	M2.01	U		
9	Convert the hex number (F8E6.39) ₁₆ to decimal number.	M3.01	А		
10	List out different modes of operations of shift registers	M4.03	R		

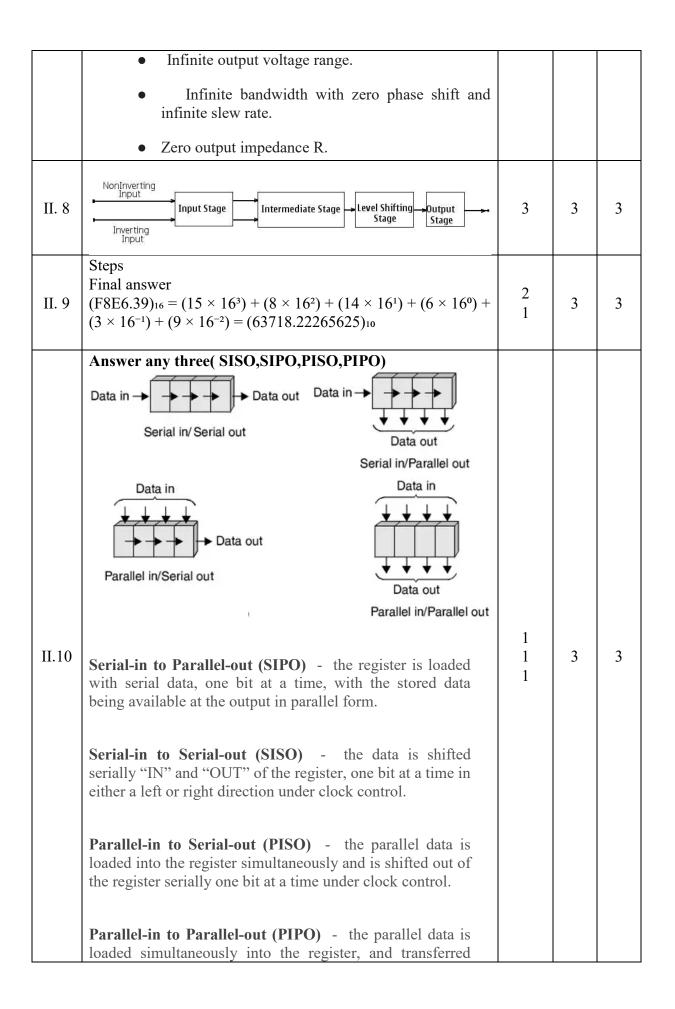
PART C

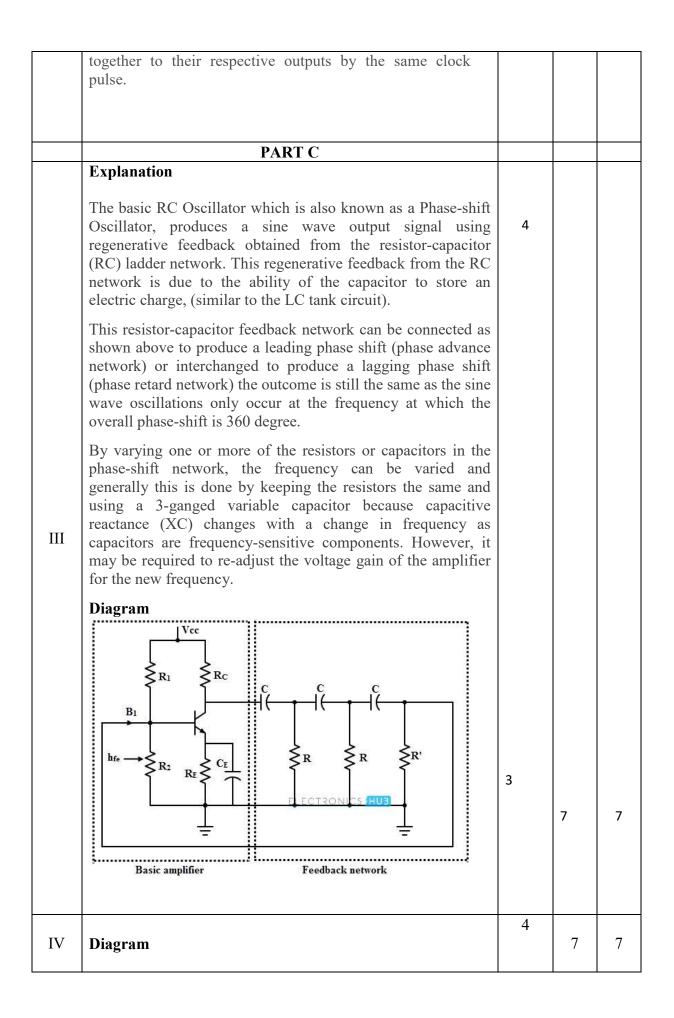
Answer ALL questions. Each question carries 7 marks.

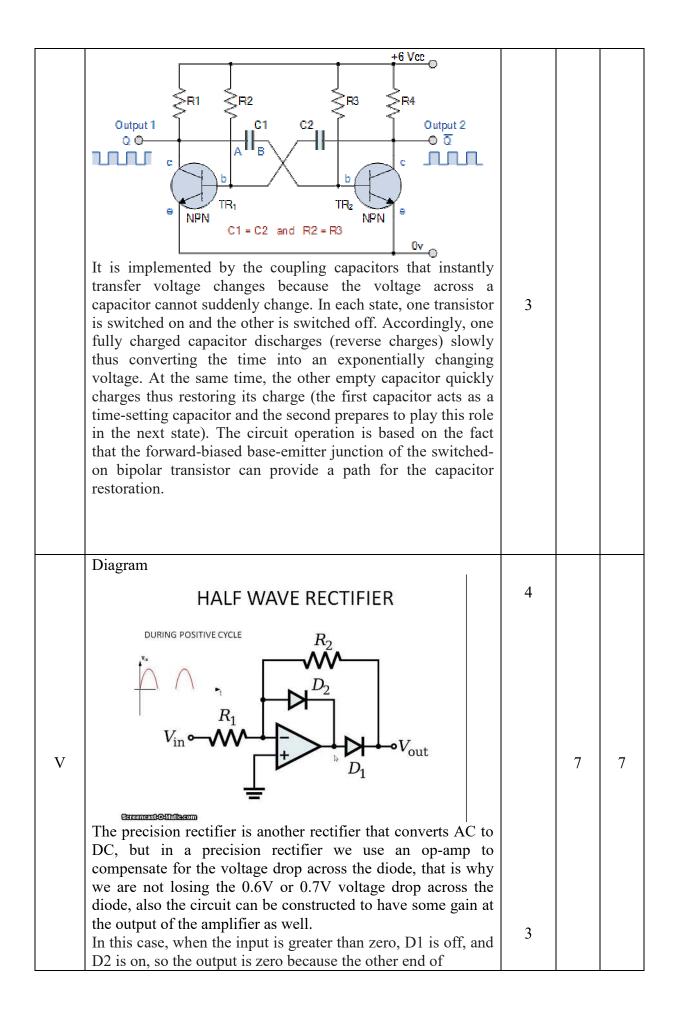
1
.03 R
.04 U
.03 R
.03 U
.03 A
.03 U
.03 A
.03 U

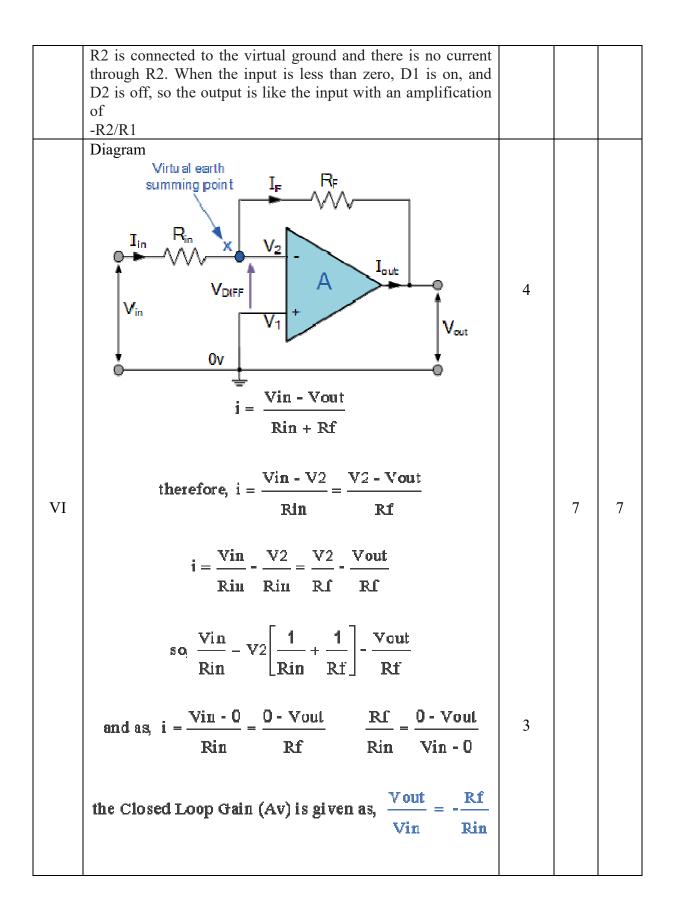
XI	Differentiate between SR and JK flip flops	M4.03	U	
	OR			
XII	With neat diagram, explain the operation of R-2R ladder type DAC	M4.03	U	
XIII	Explain the implementation of full adder using half adder			
	OR			
XIV	Construct a mod 8 asynchronous counter. Also draw its logic, timing diagram and truth table.	M4.03	А	

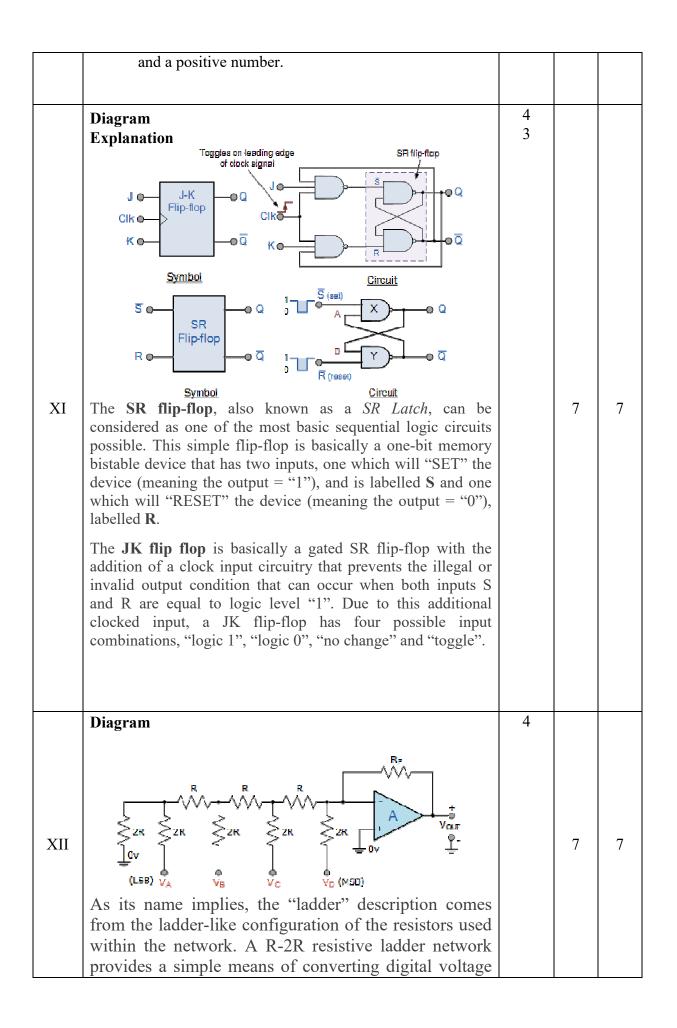

Scoring Indicators

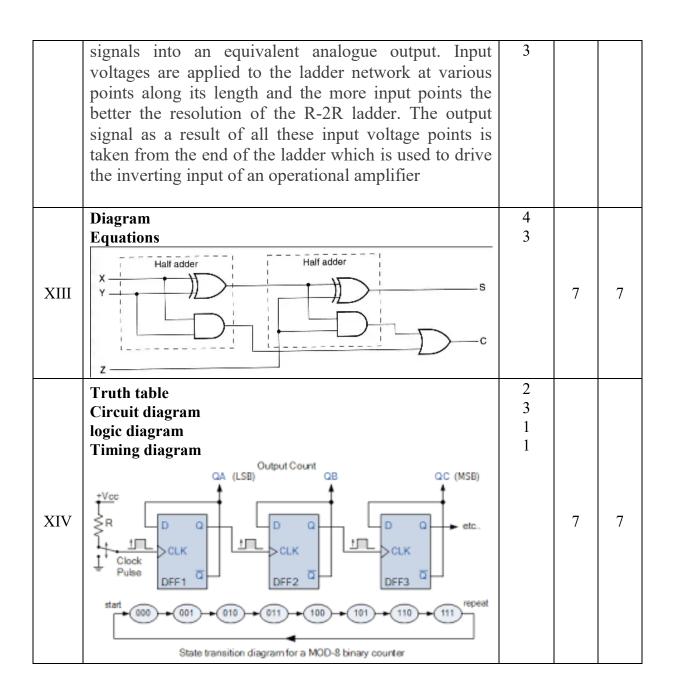

Model Question Paper I


Analog & Digital Circuits


Q No	Scoring Indicators	Split score	Sub Tota 1	Tota 1 Scor e
	PART A			
I. 1	When the collector current flows for less than half cycle of the input signal, the power amplifier is known as class C power amplifier.	1	1	1
I. 2	$ \beta A = 1$ $\Box \beta A = 2 \pi n, n \Box 0, 1, 2, \dots$	0.5 0.5	1	1
I. 3	The ratio of the common-mode gain to differential-mode gain.	1	1	1
I. 4	Write any two application(summing amplifier, inverting amplifier, comparator etc)	0.5 0.5	1	1
I. 5	$\overline{A \cdot B} \equiv \overline{A} + \overline{B}$ and $\overline{A + B} \equiv \overline{A} \cdot \overline{B},$	0.5 0.5	1	1
I. 6	AND,OR Y=AB+C	0.5 0.5	1	1
I. 7	SymbolTruth TableABQB $=1$ Q2-input Ex-OR Gate010110110110111011111111111	1	1	1
I. 8	Set Pin S Q Output Reset Pin R Q' Inverted Output Clock Symbol: SR Flip-flop	1	1	1


I. 9	Flip-flop, register, counter	0.5 0.5	1	1	
	PAR				
II. 1	Class A: This single output trapoint within the middle of its 1 into its cut-off or saturation conduct current over the full 36 ClassB: Transistor device of conducts through one half or 18 Class C: The conduction a significantly less than 180 deg the 90 degrees area.	1 1 1	3	3	
	Any three points , each carry	one mark			
	Positive	Negative		3	
II. 2	Input signal and output signal are in the same phase.	Weakens the input signal	1		3
11. 2	Makes the input signal stronger.	Smaller than the gain of the system	1		3
	Decreases the stability of the system.	Increases the stability of the state			
II. 3	 Answer any three Higher stability High Q. Frequency Customization Low Phase Noise. 	on and Range is higher	1 1 1	3	3
	Answer any three points				
	Astable	Bistable	1		
II. 4	No stable state	Two stable state	1 1	3	3
	No trigger needed	Trigger needed	1		
	Used as pulse generato	ors Used as flip flops			





VII	$F(A,B,C,D) = \sum m[0,1,2,5,28,7,10,13,15]$ $AB \xrightarrow{\circ \circ \circ} 0 \xrightarrow{\circ \circ} 1 \xrightarrow{\circ} 1 \xrightarrow{\circ}$	4 2 1	7	7
VIII	 Addition (Any Example) Add 1101 +(-1001) 1. First, find the 1's complement of the negative number 1001. So, for finding 1's complement, change all 0 to 1 and all 1 to 0. The 1's complement of the number 1001 is 0110. 2. Now, add both the numbers, i.e., 1101 and 0110; 1101+0110=1 0011 3. By adding both numbers, we get the end-around carry 1. We add this end around carry to the LSB of 0011. 0011+1=0100 Subtraction (Any Example) Subtracting 10101 - 00111 1. Take 1's complement of subtrahend 00111, which comes out 11000. 2. Take sum them, 10101+11000 =1 01101. 3. In the above result, we get the carry bit 1, so add this to the LSB of a given result, i.e., 01101+1=01110, 	3.5	7	7
IX	K map	4 2 1	7	7

_				1	1
		$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$ $Y = \overline{ABC} + \overline{ABC} + \overline{ABC}$ $Y = \overline{ABC} + \overline{ABC}$ Steps Final result			
		Addition (Student can choose any two binary numbers for example)			
	Х	 Find the 2's complement of the negative number 1001. So, for finding 2's complement, change all 0 to 1 and all 1 to 0 or find the 1's complement of the number 1001. The 1's complement of the number 1001 is 0110, and add 1 to the LSB of the result 0110. So the 2's complement of number 1001 is 0110+1=0111 Add both the numbers, i.e., 1101 and 0111; 1101+0111=1 0100 By adding both numbers, we get the end-around carry 1. We discard the end-around carry. So, the addition of 	3.5	7	7
		 both numbers is 0100. Subtraction (Student can choose any two binary numbers for example) 10101- 00111 1. Take 2's complement of subtrahend 00111, which is 11001. Take Sum 10101+11001 =1 01110. 2. In the above result, we get the carry bit 1. So we discard this carry bit and remaining is the final result 	3.5		

Module wise question analysis

Question No	Module	No of questions	i
--------------------	--------	-----------------	---

	Ι	II	III	IV	
Part A (1 Mark)	2	2	3	2	9
Part B (3 Marks)	4	4	1	1	10
Part C (7 Marks)	2	2	4	4	12
Total questions	8	8	8	7	31
Total (Marks)-123	28	28	34	33	

Cognitive level wise question analysis

Question No	Cognitive level			No of questions
	Remember	Understan d	Apply	
Part A (1 Mark)	7	1	1	9
Part B (3 Marks)	5	4	1	10
Part C (7 Marks)	2	7	3	12
Total questions	14	12	5	31
Total (Marks)=123	36	62	25	

Prepared By :	Scrutinised By :
added 2	Station H.
Nikhil V T	Shithin P V
Lecturer Govt Polytechnic College, Kannur	Lecturer Govt. Polytechnic College, Kannur

Model Question Paper II

ANALOG & DIGITAL CIRCUITS

Time: 3 Hour

Max.Marks: 75

PART A

I. Answer **all** questions in one word or one sentence. Each question carries 1 mark.

1	Define the term feedback in an amplifier.	M 1.02	R
2	List the conditions for sustained oscillations		R
3	Define voltage gain of an op-amp.	M 2.01	R
4	List the applications of op amp circuits?	M 2.03	R
5	List two laws associated with Boolean algebra		R
6	Differentiate SOP and POS representation of Boolean expression.	M 3.04	U
7	Convert the decimal number (17)10 to its binary equivalent number	M 3.01	А
8	Explain the term combinational circuit	M 4.01	R
9	List any two applications of flip flops	M 4.02	R

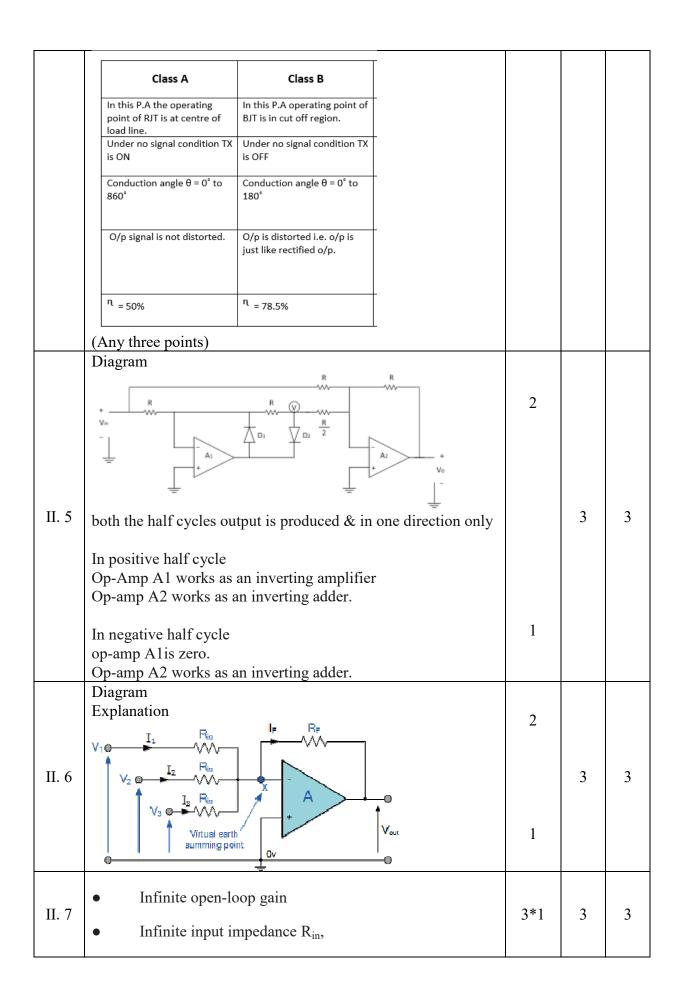
PART B

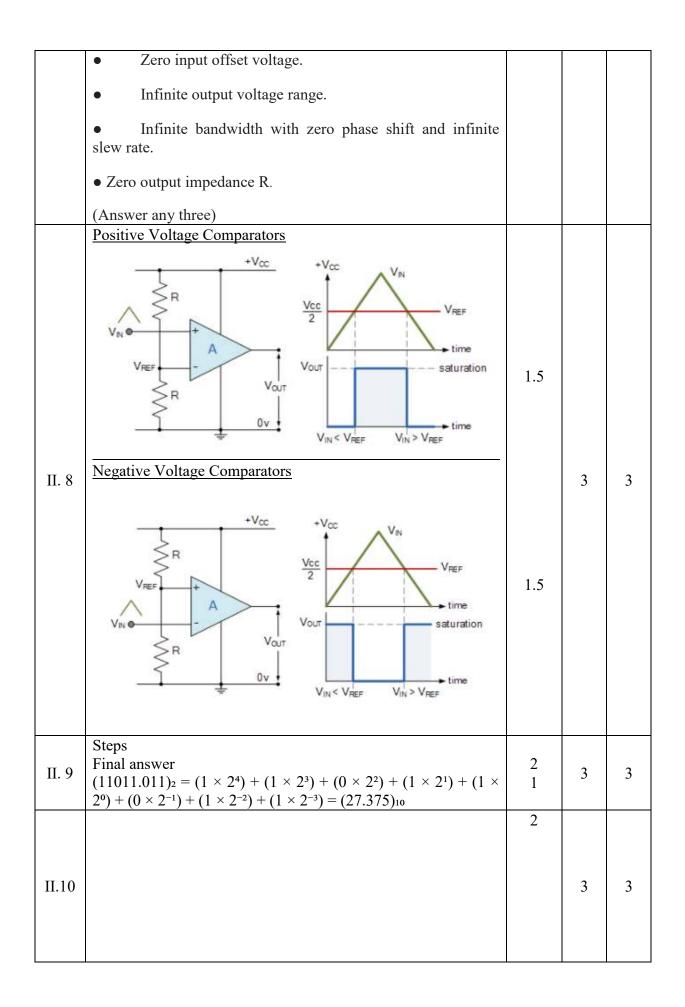
II. Answer any **eight** questions from the following, each question carries 3 marks.

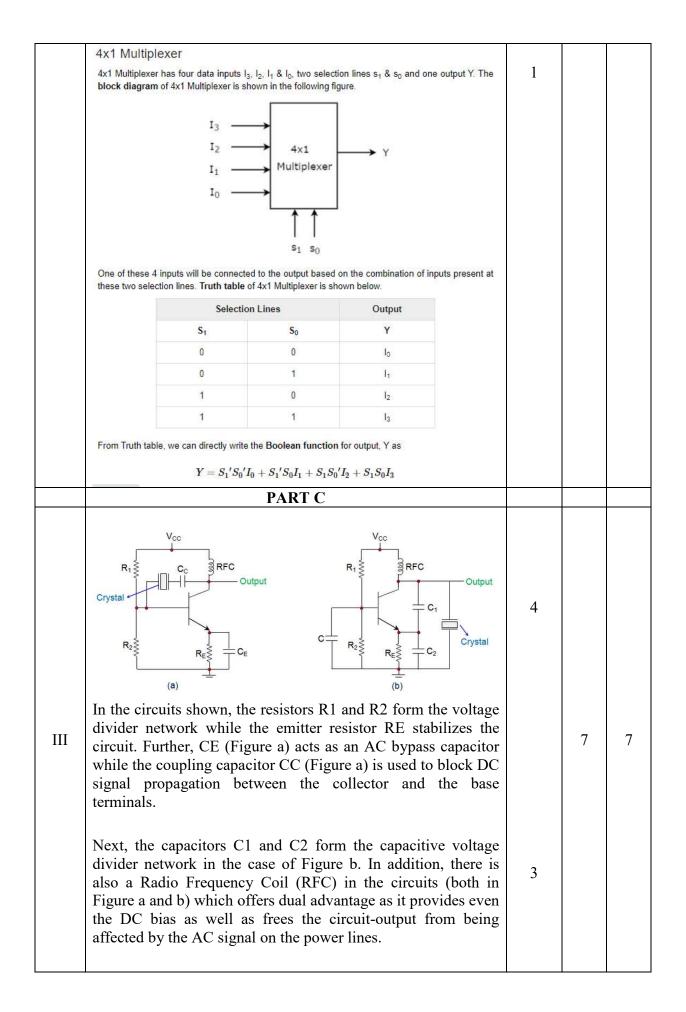
1	Explain a complementary symmetry push pull amplifier?	M 1.01	R
2	Compare positive and negative feedback	M 1.02	U
3	List the classifications of multi vibrator circuits?	M 1.04	R
4	Compare class A and class B power amplifiers	M 1.01	U
5	Explain full wave precision rectifier with circuit diagram	M 2.04	U
6	Describe working principle of summing amplifier		R
7	List the characteristics of ideal op amp	M 2.01	R
8	Compare positive and negative level comparator with circuit diagrams	M 2.04	U
9	Convert the binary number (11011.011)2 to decimal	M 3.01	А
10	Describe the working of multiplexer circuit with an example	M 4.01	R

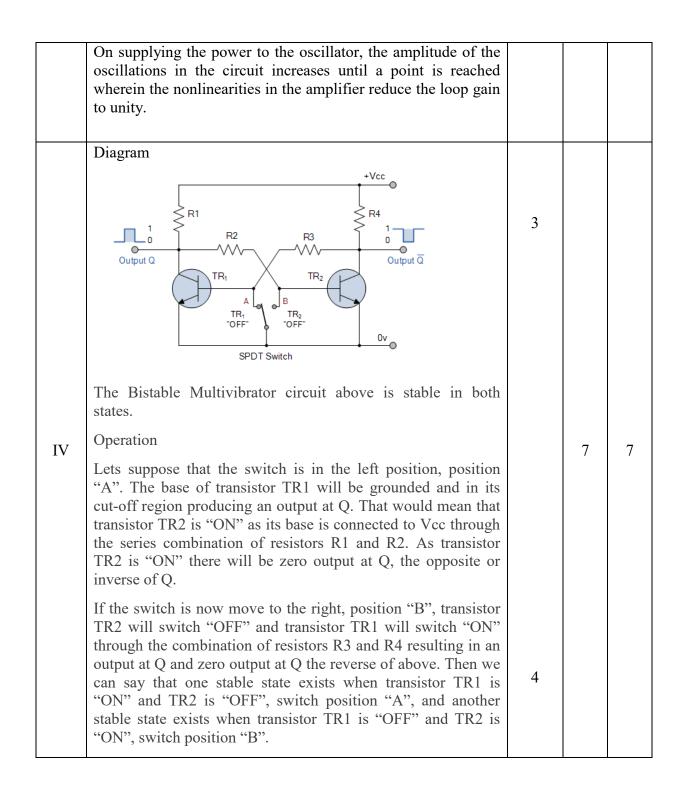
Answer ALL questions. Each question carries 7 marks.

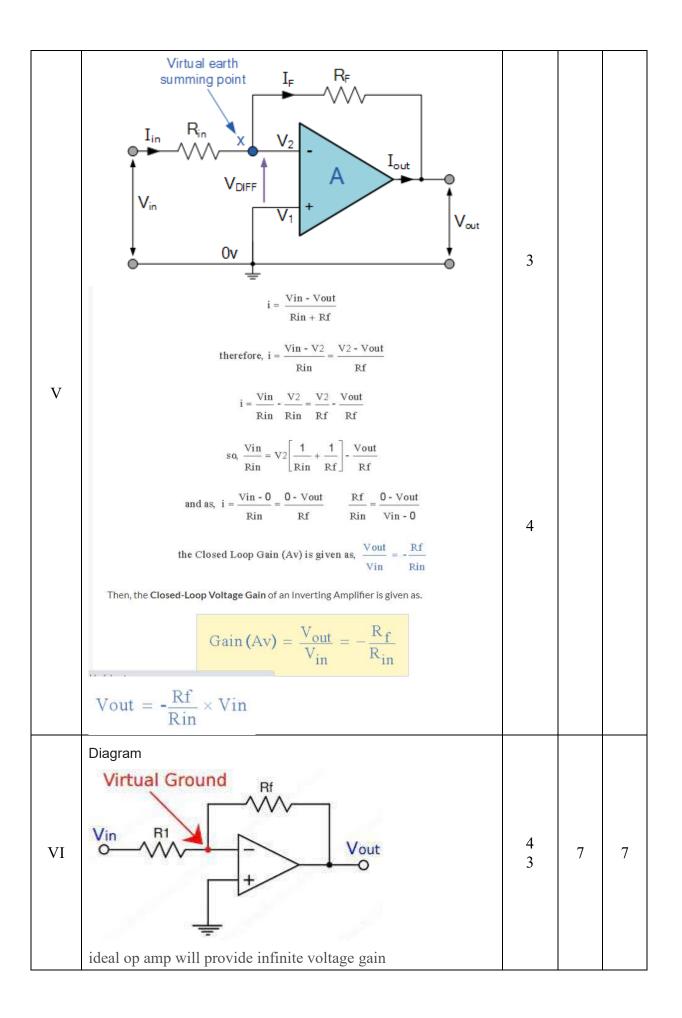
Describe the working principle of crystal oscillator with a neat diagram	M 1.03	R			
Explain the operation of bistable multivibrator with a neat diagram	M 1.04	U			
Explain op amp as inverting amplifier. Derive its output voltage	M 2.02	U			
OR					
Show the concept of virtual ground with the help of a neat diagram	M 2.01	R			
Apply Demorgan's theorem and simplify the following expression					
$(\overline{A\overline{B}} + \overline{C}D + EF)$	M 3.03	Α			
OR					
Explain about common logic gates and universal gates in digital circuits	M 3.02	U			
Using K map,minimize the following boolean function f(A, B, C, D) = $\Sigma m(1, 2, 4, 5, 7, 8, 9, 10, 13, 15)$	M 3.04	А			
OR					
Explain 2's complement addition and subtraction using suitable example	M 3.01	U			
Explain the operation of R-2R ladder type DAC using neat diagram	M 4.04	U			
OR					
Differentiate between SR and JK flip flops	M 4.02	U			
Draw the diagram of ramp type ADC and explain it.	M 4.04	U			
OR					
Construct half adder and half subtractor using basic gates. Draw its truth table.	M 4.01	А			
	ORORExplain the operation of bistable multivibrator with a neat diagramExplain op amp as inverting amplifier. Derive its output voltageORShow the concept of virtual ground with the help of a neat diagramApply Demorgan's theorem and simplify the following expression $(\overline{AB} + \overline{CD} + EF)$ ORExplain about common logic gates and universal gates in digital circuitsUsing K map,minimize the following boolean function f(A, B, C, 	diagramM 1.03ORMExplain the operation of bistable multivibrator with a neat diagramM 1.04Explain op amp as inverting amplifier. Derive its output voltageM 2.02ORMShow the concept of virtual ground with the help of a neat diagramM 2.01Apply Demorgan's theorem and simplify the following expression $(\overline{AB} + \overline{CD} + EF)$ M 3.03M 3.03M 3.03Explain about common logic gates and universal gates in digital circuitsM 3.02Using K map,minimize the following boolean function $f(A, B, C, D) = \Sigmam(1, 2, 4, 5, 7, 8, 9, 10, 13, 15)$ M 3.04Explain 2's complement addition and subtraction using suitable exampleM 3.01Explain the operation of R-2R ladder type DAC using neat diagramM 4.04ORMDifferentiate between SR and JK flip flopsM 4.04ORMConstruct half adder and half subtractor using basic gates. Draw M 4.01			

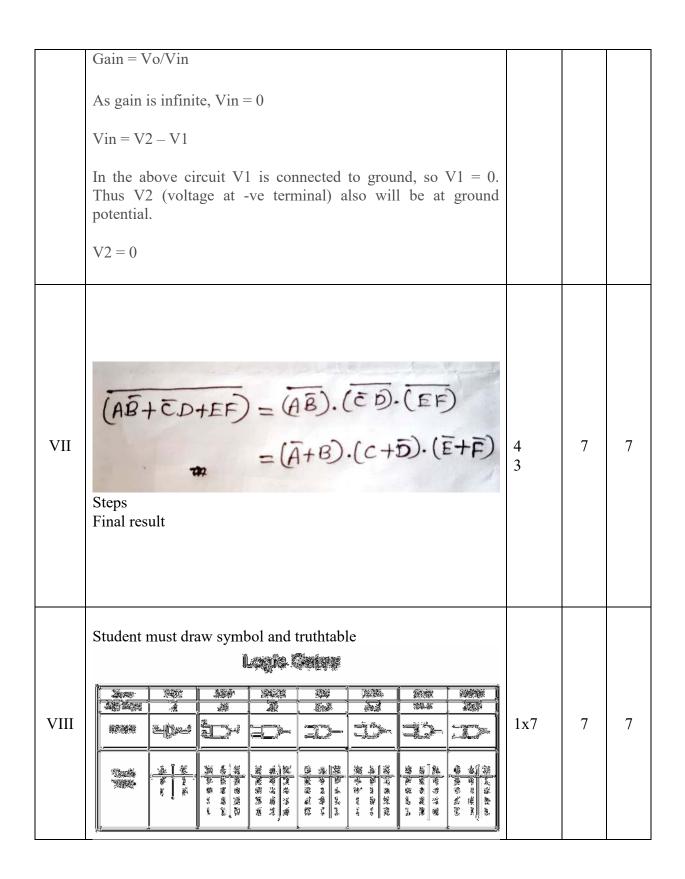

Scoring Indicators

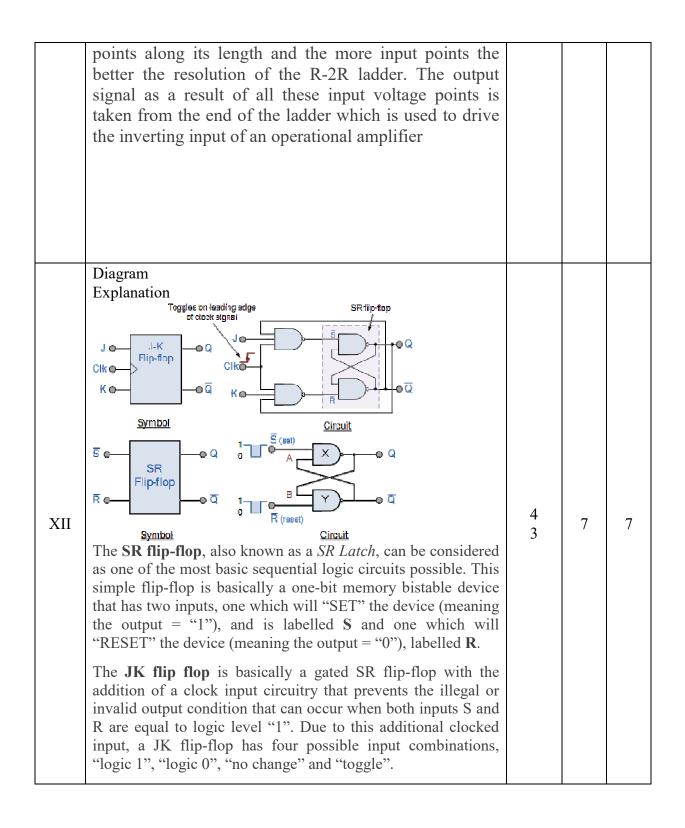

Model Question Paper II

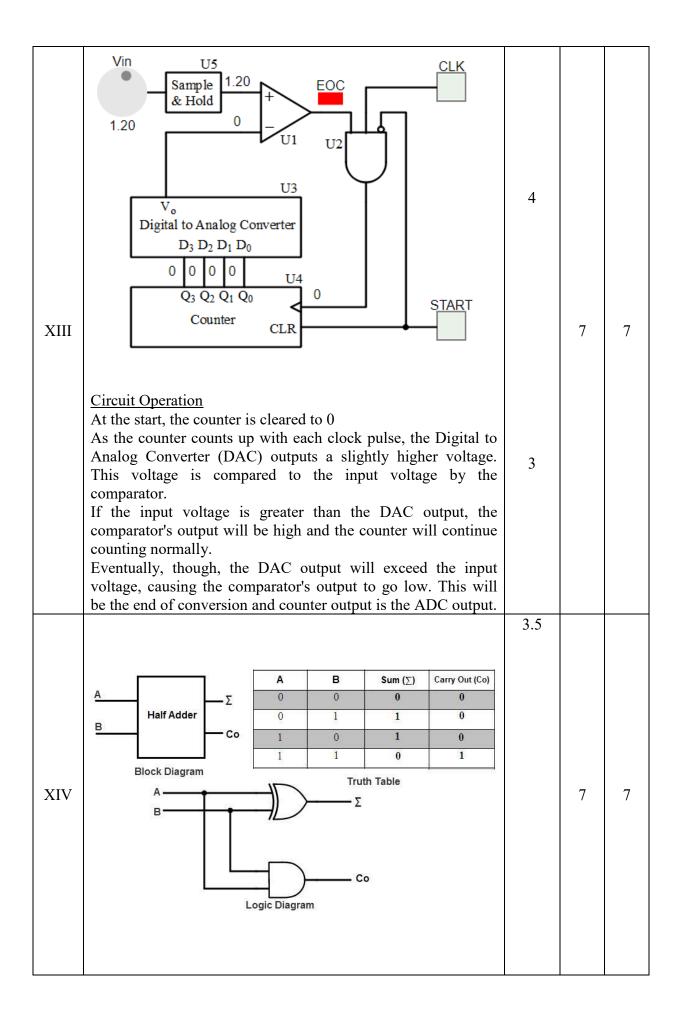

ANALOG & DIGITAL CIRCUITS

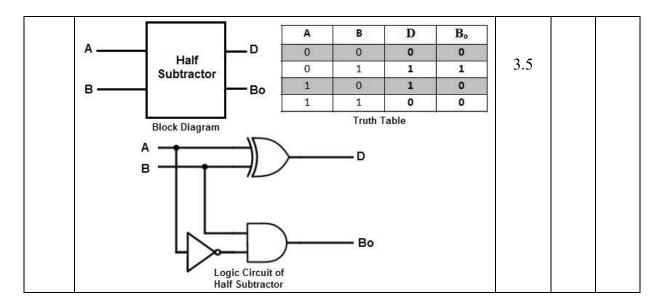

Q No	Scoring Indicators	Split score	Sub Tota 1	Tota 1 scor e	
	PART A				
I. 1	The process by which some part or fraction of output is combined with the input is known as feedback .	1	1	1	
I. 2	$ \beta A = 1$ $\ge \beta A = 2 \pi n, n \in 0, 1, 2,$	0.5 0.5	1	1	
I. 3	Voltage gain is defined as the ratio of the output voltage to the input voltage in dB	1	1	1	
I. 4	Write any two application(summing amplifier, inverting amplifier, comparator etc)	0.5 0.5	1	1	
I. 5	Commutative A+B=B+A	0.5	1	1	
1. 5	Associative A+(B+C)=(A+B)+C	0.5	0.5		
I. 6	<u>Sum of Products (SOP):</u> It is formed by adding (OR operation) the product terms. These product terms are also called 'min-terms'. <u>Product of Sums</u> (POS):	0.5	1	1	
	It is formed by multiplying(AND operation) the sum terms. These sum terms are also called 'max-terms'.	0.5			
I. 7	$(17)_{10} = (10001)_2$	1	1	1	
I. 8	Combinatorial circuit is a type of digital circuit which is implemented by Boolean circuits, where the output is a pure function of the present input only.	1	1	1	
I. 9	 Counters Registers 	0.5 0.5	1	1	
	PART B				
II. 1	Diagram	2	3	3	


	 Input Signal Cin R2 O1 Signal Cin R2 O1 R3 O2 R4 PNP R4 PNP<!--</th--><th>1</th><th></th><th></th>	1			
	Any three points , each carry on Positive	le mark Negative			
	Input signal and output signal are in the same phase.	Weakens the input signal	1		
II. 2	Makes the input signal stronger.	Smaller than the gain of the system	1	3	3
Decreases the stability of the system. Increases the stability of the state		1			
II. 3	Astable (Basic operation) Bistable (Basic operation) Monostable (Basic operation)			3	3
II. 4			3 x 1	3	3









IX	$f(A, B, C, D) = \leq m(1, 2, 4, 5, 7, 8, 9, 10, 13, 15)$ $AB \xrightarrow{\circ \circ} 01 \xrightarrow{11} 10 \xrightarrow{10} 10$ $f(A, B, C, D) = BD + \overline{C}D + \overline{A}B\overline{C} + \overline{B}B\overline{C} + \overline{B}C\overline{D}$ K map Steps Final result (other variations may accept)	4 2 1	7	7
X	 Addition using 2's complement Initially find the 2's complement of the given negative number. Sum up with the given positive number. If we get the endaround carry 1 then the number will be a positive number and the carry bit will be discarded and remaining bits are the final result. Any one example Subtraction using 2's complement In the first step, find the 2's complement of the subtrahend. Add the complement number with the minuend. If we get the carry by adding both the numbers, then we discard this carry and the result is positive else take 2's complement of the result which will be negative. 	1.5 2 1.5 2	7	7
XI	Diagram Explanation R = R = R = R = R = R = R = R = R = R =	43	7	7

Module wise question analysis

Question No	Module No of question					
	Ι	II	III	IV		
Part A (1 Mark)	2	2	3	2	9	
Part B (3 Marks)	4	4	1	1	10	
Part C (7 Marks)	2	2	4	4	12	
Total questions	8	8	8	7	31	
Total (Marks)=123	28	28	34	33		

Cognitive level wise question analysis

Question No		Cognitive leve	No of questions	
	Remember	Understan d	Apply	
Part A (1 Mark)	7	1	1	9
Part B (3 Marks)	5	4	1	10
Part C (7 Marks)	2	7	3	12
Total questions	14	12	5	31
Total (Marks)=123	36	62	25	

Prepared By :	Scrutinised By :
Rejute	Shitting H.
Rejith R.	Shithin P V
Lecturer	Lecturer
Govt. Polytechnic College Kannur	Govt.Polytechnic College Kannur