

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

ANALOG & DIGITAL CIRCUITS

[Maximum Marks: 75]

[Time: 3 Hours]

PART-A

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		$(9 \times 1 = 9)$ Module Outcome	Marks)
1.	List any two coupling schemes used in multistage transistor amplifier.	M1.01	R
2.	An oscillator employsfeedback.	M1.02	R
3.	Define CMRR of an op amp.	M2.01	R
4.	Select any one purpose of a half-wave precision rectifier.	M2.04	R
5.	Write 2's complement of 10110	M3.01	А
6.	Draw the symbol of AND gate.	M3.02	R
7.	K map for the function F is shown below. Write the reduced expression for F. $A = \begin{bmatrix} A & B & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	M3.04	A
	1 0 0		
8.	Write the truth table of half adder.	M4.01	R
9.	The number of select lines required for a 4 x 1 multiplexer is	M4.01	Α

PART-B

II. Answer any *eight* questions from the following. Each question carries 'three' marks.

		$(8 \times 3 = 24$ Module Outcome	Marks) Cognitive level
1.	State the importance of coupling in amplifiers.	M1.01	R
2.	Draw the block diagram of an opamp and label all the blocks.	M2.01	R
3.	List any three characteristics of an ideal op amp.	M2.01	R
4.	Draw the circuit for the addition of three input signals using op amp.	M2.03	U
5.	Draw the circuit of a zero crossing detector using op amp.	M2.04	U
6.	Divide the binary number $(1001110)_2$ by $(100)_2$	M3.01	А
7.	List the universal gates. Draw the symbol and write the truth table.	M3.02	R

8.	Simplify the expression $Y = \overline{(\overline{A} + B) + CD}$ using DeMorgan's	M3.03	А
	theorem.		
9.	Convert the given SOP expression to its standard form.	M3.04	А
	f(A,B,C) = AB + BC + AC		
10.	List any three applications of flip flop.	M4.02	R

PART-C

Answer all questions. Each question carries 'seven' marks.

		$(6 \mathbf{X}) = 42$ Module Outcome	IVIACKS)
III.	Compare class A, class B and class C power amplifiers. Write any four comparisons.	M1.01	U
	OR		
IV.	With the help of block diagram, distinguish between positive and negative feedback.	M1.02	U
V.	Explain the working of a RC phase shift oscillator with a neat sketch.	M1.03	U
VI.	OR Illustrate the working of bistable multivibrator using transistor.	M1.04	U
VII.	Draw the circuit diagram of a differentiator circuit using op amp.		
	Derive the expression for the output voltage.	M2.03	U
	OR		
VIII.	Summarise the operation of an inverting amplifier using op amp.	M2.02	U
IX.	Convert the following binary numbers to decimal and hexadecimal	M3.01	R
	numbers.		
	a) 1101.101		
	b) 10010.01		
	OR		
X.	Simplify the expression $f(A, B, C) = \Sigma m(0, 2, 3, 4, 5, 6)$ using K	M3.04	А
	map.		
XI.	Explain the implementation of a full adder using half adders.	M4.01	U
	OR		
XII.	Explain a mod 8 ripple counter using JK flip flop.	M4.03	U
1		1	1

- 12 M (6 7

XIII.	Draw the logic diagram of following 4 bit shift registers using D	M4.03	R
	flip flops.		
	a) Serial In Serial Out shift register		
	b) Serial In Parallel Out shift register		
	OR		
XIV.	Draw symbolic representation and write truth table of the following	M4.02	R
	flip flops.		
	1) JK		
	2) SR		
