N22-2110220196 B

Reg. No..... Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

DIGITAL COMPUTER FUNDAMENTALS

[Maximum Marks: 75]

[Time: 3 Hours]

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.
(0 x 1 = 0 Marke)

		$(9 \times 1 = 9 \text{ Marks})$		
		Module Outcome	Cognitive level	
1.	Convert 28 ₁₆ to binary.	M1.01	Α	
2.	Find 2's complement of 10001	M1.01	Α	
3.	How negative numbers are represented in computers?	M1.03	U	
4.	are called Universal gates.	M2.03	R	
5.	Draw the truth table of two input OR gate.	M2.04	R	
6.	Expansion of BCD is	M3.03	R	
7.	The asynchronous inputs of Flip Flops areand	M4.02	U	
8.	Write the equation of the outputs of Half adder circuit.	M3.02	R	
9.	Define sequential logic circuit.	M4.01	R	

PART-B

II. Answer any *eight* questions from the following. Each question carries *'three'* marks.

		$(8 \times 3 = 24)$ Module Outcome	Marks) Cognitive level
1.	Add the decimal numbers 25 and 48 converting of BCD format.	M1.05	А
2.	Explain Gray codes.	M1.04	U
3.	State Demorgan's Laws.	M2.01	R
4.	Draw the truth table corresponds to the function.	M2.05	А
	F (x,y,z) = Σ (1,3,4,6)		
5.	Prove that x+xy=x	M2.01	А
6.	Design the logic diagram of AND gate using NOR gate, and write the	M2.04	А
	truth table.		
7.	Draw the circuit and truth table of 2 to 1 multiplexer.	M3.04	U
8.	Construct the combinational circuit for Boolean equation.	M3.01	U
	F=(A+B).CD		
9.	Draw the circuit of 3 bit Parallel In Parallel Out shift register and	M4.03	А
	explain its working.		
10.	Construct SR latch with NAND gates.	M4.02	U

PART-C

Answer all questions. Each question carries 'seven' marks.

(6	X	7	=	42	M	laı	·k	s)

		Module Outcome	Cognitive level
III.	Write the result of the following operations.	M1.01	Α
	a) Convert 11011_2 to decimal and hexadecimal. (2 marks)		
	b) $11A_{16}$ to Decimal (2 marks)		
	c) 242_{10} to Binary and Octal (3 marks)		
	OR		
IV.	a) What are error detection codes? How parity bit helps to	M1.04	U
	detect transmission errors? (4 marks)		
	b) What is BCD codes? Add BCD numbers 1000 and 0101.	M1.05	A
	(3 marks)		
V.	Implement the logic functions of Basic Gates using NAND gate.	M2.04	U
	(7 marks)		
371	UR	M2 05	
V1.	Construct the logic diagram for the Boolean function by	M2.05	A
	simplifying using K-iviap. (7 morts)		
VII	$\mathbf{F}(\mathbf{x},\mathbf{y},\mathbf{z}) = \mathbf{x} \cdot \mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{y} \cdot \mathbf{z} + \mathbf{x}\mathbf{y}\mathbf{z} + \mathbf{x}\mathbf{y}\mathbf{z} $ (7 marks)	M3 02	II
V 11.	Develop the truth table of full adder and draw its logic diagram.	1013.02	0
	(7 marks)		
	OR		
VIII.	Construct a 4 bit binary adder subtractor and explain its working.	M3.04	А
	(7 marks)		
137		1/2.04	
IX.	Construct the logic diagram of magnitude comparator and explain.	M3.04	A
	(7 marks)		
	OR		
X.	Explain Decoders and Encoders with block diagram. (7 marks)	M3.04	U
XI.	Construct the Logic diagram of JK Flip flop and explain its	M4.02	А
	working with the help of characteristics table. (7 marks)		
	OR		
XII.	Construct a 3 bit Ring counter and explain its working. (7 marks)	M4.04	А
XIII.	Design an Asynchronous 4 bit Binary UP counter and explain its	M4.03	А
	working. (7 marks)		
	OR		
XIV.	Explain different types of Shift registers. (7 marks)	M4.03	U
