Model Question Paper

DIPLOMA IN COMPUTER ENGINEERING

Database Management Systems-I

Time : 3 Hour

Max.Marks: 75

PART A

I.Answer all the following questions

(9 x 1 = 9 Marks)

1	Define instance	M 1.01	R
2	List any two DBMS interfaces	M 1.02	R
3	Write the command used to change the definition of a base table	M 2.01	R
4	The keywordin the SELECT clause eliminates duplicate	M 2.01	R
	tuples from the result of an SQL query.		
5	Theis a concise description of the data requirements of	M 3.01	R
	the users.		
6	The value of a attribute is the concatenation of the	M 3.02	R
	values of its constituent simple attributes		
7	is the process of defining a set of subclasses of an entity	M 3.03	R
	type.		
8	A is a constraint between two sets of attributes from the	M 4.01	R
	database.		
9	Define transaction.	M 4.04	R

PART B

II Answer any 8 questions from the following .Each questions carry 3 marks.

(8 x 3 = 24 Marks)

1	Explain logical and physical data independence	M 1.02	U
2	Illustrate referential integrity constraint with an example	M 1.03	U
3	Explain network data model	M 1.01	U
4	List any three applications of database	M 1.01	R
5	Consider the relation Employee		
		N 2 01	
	Eid FName LName Salary DeptNo	M 2.01	A
	Build SQL query to retrieve		
	a.All employees who work in Department number 7		
	b.The salary of every employee		
6	Demonstrate Assertions in SQL.	M 2.02	U
7	Explain Views in SQL with an example	M 2.02	U
8	List the three SQL commands for data definition	M 2.01	U
9	Explain the naming conventions of schema constructs	M 3.02	U
10	Apply 2 NF in the following relation Employee Project with		

	primary	y key-S	SN & PN	0			M 4.02	A
	SSN	PNo	Hours	EName	PName	PLocation		
		-	•	-				

PART C

Answer ALL questions. Each carries 7 marks. (6 x 7 = 42 Marks)

III	Explain three schema DBMS architecture with a neat diagram	M 1.02	U
	OR		
IV	Classify the different types of individuals interact with databases	M 1.01	U
V	Explain SQL data types for attributes in a schema	M 2.01	U
VI	OR	M 2.02	U
	Explain triggers in SQL		
		M 3.02	U
VII	Illustrate attribute types in the ER model with examples OR		
	Explain the concepts of generalization and specialization in EER		
VIII	model	M 3.03	U
IX	Build an E-R diagram corresponding to the		
	relation:Student(RollNo(primary	M3.05	A
	key),Name,DOB,PhoneNo,Age(derived attribute)and		
	Address(composite attribute)		
	OP		U
X	ŬK.	M3.01	
	Explain the use of High level Conceptual Data Model for		
	Database Design		
XI	Illustrate the states of transaction execution with a neat diagram	M4.03	U
	OR		
XII	Explain the need for normalization in databases	M4.02	U
XIII	Demonstrate 3NF with an example	M4 02	I
	OR	1.11.02	
XIV	Outline the advantages of mobile databases	M4.05	U

Mark Distribution

			Types of Questions							
	Hrs/Module	Marks/Module (hi/∑Hi)*123(±5%)	😨 🛛 Part A		Part B		Part C		Total	
Module			No of Questions	Marks	No of Questions	Marks	No of Questions	Marks	No of Questions	Marks
1	10	30	2	2	4	12	2	14	7	28
2	11	31	2	2	4	12	2	14	7	28
3	11	31	3	3	1	3	4	28	9	34
4	11	31	2	2	1	3	4	28	8	33
Total	43	123	9	9	10	30	12	84	31	123

Cognitive Level Mark Distribution

Cognitive Level	Marks	% of Marks
Remembering	12	10
Understanding	98	80
Applying	13	10
Analysing		
Evaluating		
Creating		
Total	123	100