N22-2110220090 A

Reg. No	• • •	••	••	•••	••		•	 •	•	 •	•
Signature						•					

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

THEORY OF STRUCTURES -I

[Maximum Marks: 75]

[Time: **3** Hours]

PART-A

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		$(9 \times 1 = 9)$ Module Outcome	Marks) Cognitive level
1.	Algebraic sum of all the moments to the left or right of the section is	M1.01	R
	called		
2.	The point at which the value of BM changes from positive to negative	M1.02	R
	is known as		
3.	The ratio of effective length to least radius of gyration	M2.01	R
4.	Fixed end moments for a fixed beam having length L carries a UDL	M3.04	R
	of intensity w/m throughout the span is		
5.	The ratio of the carried-over moment at the other end to the fixed-end	M4.03	R
	moment of the initial end is known as		
6.	Effective length of column with two ends are fixed	M2.01	R
7.	Equation of the deflection at the free end of a cantilever beam having	M3.02	R
	length L with UDL w/m throughout the span		
8.	The product of Young's Modulus & moment of inertia is known	M4.01	R
	as		
9.	The deflection for a fixed beam isthan a simply	M3.04	R
	supported beam with same span & loading.		

PART-B

II. Answer any *eight* questions from the following. Each question carries 'three' marks.

(8 x 3 = 24 Marks) Module Outcome Cognitive level

1.	Write the assumptions of pure bending.	M1.01	R
2.	Write the limitations of Euler's Formula.	M2.02	R
3.	Arrive the formula for the mid span deflection of a simply supported	M3.02	U
	beam with central concentrated load using Moment area method.		
4.	Write down the steps in Moment distribution method.	M4.03	R
5.	Write the relation between the maximum & average shear stress for a	M1.04	R
	rectangular section & draw the shear stress distribution of the section.		
6.	Draw the core of a rectangular section, by explaining the concept of	M2.04	R
	limit of eccentricity.		

7.	Write the Fixed end moment for a beam of span 6m, a UDL of 3kN/m	M3.04	U
	on the entire span & central concentrated load of 10kN.		
8.	Explain :	M4.03	R
	i) Stiffness ii) Distribution factor		
9.	Draw the BM & SF Diagrams of the simply supported beam with	M1.02	R
	UDL.		
10.	Find the maximum diameter of a solid shaft which will not twist more	M3.03	А
	than 3^0 in a length of 6m when subjected to a torque of 12kN-m? What		
	is the maximum shear stress induced in the shaft? Take Modulus of		
	rigidity = 82 Gpa.		

PART-C Answer all questions. Each question carries *'seven'* marks.

	$(6 \text{ x} 7 = 42 \text{ M}_{2})$			
		Module Outcome	Cognitive level	
III.	A beam of span 8m having cross section 200 x 400 mm simply	M1.04	А	
	supported at both ends. The maximum bending stress for the beam			
	material is 20N/mm ² . What will be the max value of midspan			
	concentrated load that can be applied on the beam?			
	OR			
IV.	A simply supported beam of span 8m carries of UDL of 20kN/m	M1.04	U	
	over entire span. The beam is having a cross section of 120mm x			
	180mm. Draw the shear stress distribution at 1m from the left			
	support, by considering horizontal fiber 30mm apart from top to			
	bottom in the cross section.			
V.	Define:	M2.05	R	
	i) Middle third Rule			
	ii) Angle of internal friction			
	iii) Weep holes			
	OR			
VI.	A hollow mild steel tube 8m long & 5cm internal diameter and	M2.02	U	
	10mm thick used as a strut with two ends fixed. Find Euler's			
	Crippling load and safe load if the Factor of safety 3,			
	$E=2 \times 10^5 \text{ N/mm}^2$.			

VII.	A cantilever beam having length L carries a point load of W at the	M3.02	А
	center. Determine the slope & deflection at the free end? Use		
	Moment area method.		
	OR		
VIII.	Compare the Bending moment diagrams of simply supported beam	M3.04	А
	& fixed beam having same length. Both have a UDL of w/m		
	throughout the span. Which beam experience maximum bending		
	moment?		
IX.	A two span continuous beam both have equal span, carries a point	M4.02	U
	load of W at the center of each span, all supports are simply		
	supported. Draw the BM & SF Diagrams using Clapeyron's		
	Equation. Take E1 constant.		
	OR		
Х.	A beam ABC A & C are fixed and B simply supported. The span	M4.03	U
	AB carries a point load of 15kN at the center. The span BC carries		
	a UDL of 10kN/m. AB=5m, BC=4m. Draw the BM Diagrams		
	using Moment distribution method.		
XI.	Draw BM & SF Diagrams of the beam ABC, BC is the	M1.02	U
	overhanging span. AB=4m, BC=2m. Point load of 36kN act at the		
	midspan of AB & point load of 20kN act at C. supports A & B are		
	simply supported.		
	OR		
XII.	What are the major forces acting on a dam? Describe the stability	M2.05	U
	criteria based on the effect of these forces.		
XIII.	A solid circular shaft has to transmit 150kW of power at 200 rpm.	M3.03	U
	If the allowable shear stress is 75MPa and permissible twist is 1^0 in		
	a length of 3m, find the diameter of the shaft.		
	Take Modulus of rigidity = 82GPa		
	OR		
XIV.	Explain how to find out the distribution factor for the member OA,	M4.03	U
	OB, OC, OD meet at a rigid point O. All member have same EI		
	value. OA=OC=4m, OB=OD=3m. Supports A & B are hinged, C		
	& D are Fixed. Take EI as constant.		
