\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER - 2022

THEORY OF STRUCTURES -I

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.

		$(9 \times 1=9 \text { Marks })$ Module Outcome Cognitive leve	
1.	Algebraic sum of all the moments to the left or right of the section is called. \qquad	M1. 01	R
2.	The point at which the value of BM changes from positive to negative is known as. \qquad	M1.02	R
3.	The ratio of effective length to least radius of gyration............	M2.01	R
4.	Fixed end moments for a fixed beam having length L carries a UDL of intensity w / m throughout the span is.	M3.04	R
5.	The ratio of the carried-over moment at the other end to the fixed-end moment of the initial end is known as.	M4.03	R
6.	Effective length of column with two ends are fixed.............	M2.01	R
7.	Equation of the deflection at the free end of a cantilever beam having length L with UDL w/m throughout the span.	M3.02	R
8.	The product of Young's Modulus \& moment of inertia is known as. \qquad	M4.01	R
9.	The deflection for a fixed beam is \qquad .than a simply supported beam with same span \& loading.	M3.04	R

PART-B

II. Answer any eight questions from the following. Each question carries 'three' marks.

$\mathbf{8} \mathbf{x} \mathbf{3 =} \mathbf{2 4} \mathbf{M a r k s})$ 1. Write the assumptions of pure bending. M 1.01 2. Write the limitations of Euler's Formula. R 3. Arrive the formula for the mid span deflection of a simply supported beam with central concentrated load using Moment area method. M 3.02 4. Write down the steps in Moment distribution method. U 5. Write the relation between the maximum \& average shear stress for a rectangular section \& draw the shear stress distribution of the section. M 1.04 6. Draw the core of a rectangular section, by explaining the concept of limit of eccentricity. M 2.04			R

7.	Write the Fixed end moment for a beam of span 6 m, a UDL of $3 \mathrm{kN} / \mathrm{m}$ on the entire span \& central concentrated load of 10 kN.	M 3.04	U
8.	Explain : i) Stiffness ii) Distribution factor	M 4.03	R
9.	Draw the BM \& SF Diagrams of the simply supported beam with UDL.	M 1.02	R
10.	Find the maximum diameter of a solid shaft which will not twist more than 3^{0} in a length of 6 m when subjected to a torque of $12 \mathrm{kN}-\mathrm{m}$? What is the maximum shear stress induced in the shaft? Take Modulus of rigidity $=82$ Gpa.	M 3.03	A

PART-C

Answer all questions. Each question carries 'seven' marks.
($6 \times 7=42$ Marks)

III.	A beam of span 8 m having cross section $200 \times 400 \mathrm{~mm}$ simply supported at both ends. The maximum bending stress for the beam material is $20 \mathrm{~N} / \mathrm{mm}^{2}$. What will be the max value of midspan concentrated load that can be applied on the beam? OR	M1.04	A
IV.	A simply supported beam of span 8 m carries of UDL of $20 \mathrm{kN} / \mathrm{m}$ over entire span. The beam is having a cross section of $120 \mathrm{~mm} x$ 180 mm . Draw the shear stress distribution at 1 m from the left support, by considering horizontal fiber 30 mm apart from top to bottom in the cross section.	M1.04	U
V.	Define: i) Middle third Rule ii) Angle of internal friction iii) Weep holes	M2.05	R
VI.	OR A hollow mild steel tube 8 m long \& 5 cm internal diameter and 10 mm thick used as a strut with two ends fixed. Find Euler's Crippling load and safe load if the Factor of safety 3, $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.	M2.02	U

\begin{tabular}{|c|c|c|c|}
\hline VII.

VIII. \& \begin{tabular}{l}
A cantilever beam having length L carries a point load of W at the center. Determine the slope \& deflection at the free end? Use Moment area method.

OR

Compare the Bending moment diagrams of simply supported beam \& fixed beam having same length. Both have a UDL of w/m throughout the span. Which beam experience maximum bending moment?

 \&

M3.02

M3. 04
\end{tabular} \& A

A

\hline IX. \& | A two span continuous beam both have equal span, carries a point load of W at the center of each span, all supports are simply supported. Draw the BM \& SF Diagrams using Clapeyron's Equation. Take E1 constant. |
| :--- |
| OR |
| A beam $A B C$ A \& C are fixed and B simply supported. The span AB carries a point load of 15 kN at the center. The span BC carries a UDL of $10 \mathrm{kN} / \mathrm{m}$. $\mathrm{AB}=5 \mathrm{~m}, \mathrm{BC}=4 \mathrm{~m}$. Draw the BM Diagrams using Moment distribution method. | \& | M4.02 |
| :--- |
| M4. 03 | \& U

U

\hline XI. \& | Draw BM \& SF Diagrams of the beam $\mathrm{ABC}, \mathrm{BC}$ is the overhanging span. $A B=4 \mathrm{~m}, \mathrm{BC}=2 \mathrm{~m}$. Point load of 36 kN act at the midspan of $A B$ \& point load of 20 kN act at C. supports A \& B are simply supported. |
| :--- |
| OR |
| What are the major forces acting on a dam? Describe the stability criteria based on the effect of these forces. | \& M1.02

M2.05 \& U

U

\hline XIII. \& | A solid circular shaft has to transmit 150 kW of power at 200 rpm . If the allowable shear stress is 75 MPa and permissible twist is 1^{0} in a length of 3 m , find the diameter of the shaft. |
| :--- |
| Take Modulus of rigidity $=82 \mathrm{GPa}$ |
| OR |
| Explain how to find out the distribution factor for the member OA, $\mathrm{OB}, \mathrm{OC}, \mathrm{OD}$ meet at a rigid point O . All member have same EI value. $\mathrm{OA}=\mathrm{OC}=4 \mathrm{~m}, \mathrm{OB}=\mathrm{OD}=3 \mathrm{~m}$. Supports $\mathrm{A} \& B$ are hinged, C \& D are Fixed. Take EI as constant. | \& M3.03

$$
\text { M4. } 03
$$ \& U

U

\hline
\end{tabular}

